论文标题
Alma对Planck Galactic Cold Clumps(Almasop)的调查:检测Prestellar核心的极高密度紧凑结构和多个子结构
ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Detection of extremely high density compact structure of prestellar cores and multiple substructures within
论文作者
论文摘要
Prestellar核心是未来恒星诞生的分子云中自我散热的密集和冷结构。预计,在过渡到原始阶段的阶段,它们可以避开集中浓缩的密集(子)结构,这些结构将使新恒星或二元/多个恒星系统的形成形成。表征这种进化的关键阶段是我们对恒星形成的理解的关键。在这项工作中,我们报告了在浓密的Prestellar核心样本中以千au量表的高密度(子)结构的检测。通过我们最近对Orion Molecular Cloud的Alma观察,我们发现了五个极其密集的Prestellar核心,它们具有中央集中的区域$ \ sim $ \ sim $ 2000 au,而平均密度的几个$ 10^7 $ $ CM^{ - 3} $的平均密度。这些中心密度区域的质量在0.30至6.89 m $ _ \ odot $的范围内。 {\ it首次},我们的高分辨率观测值(0.8 $''\ sim $ 320 au)进一步揭示了其中一个核心显示出明确的碎片签名;这样的单个子结构/片段的尺寸为800 -1700 au,质量为0.08至0.84 m $ _ \ odot $,密度$ 2-8 \ times 10^7 $ $ $ $ $ $ cm^{ - 3} $和$ \ $ \ $ \ sim 1200 $ au的分离。这些子结构足够大($ \ gtrsim 0.1〜m_ \ odot $)形成年轻的恒星对象,并且可能是最早的恒星胚胎阶段的例子,这些阶段可能会广泛地导致多个系统。
Prestellar cores are self-gravitating dense and cold structures within molecular clouds where future stars are born. They are expected, at the stage of transitioning to the protostellar phase, to harbor centrally concentrated dense (sub)structures that will seed the formation of a new star or the binary/multiple stellar systems. Characterizing this critical stage of evolution is key to our understanding of star formation. In this work, we report the detection of high density (sub)structures on the thousand-au scale in a sample of dense prestellar cores. Through our recent ALMA observations towards the Orion molecular cloud, we have found five extremely dense prestellar cores, which have centrally concentrated regions $\sim$ 2000 au in size, and several $10^7$ $cm^{-3}$ in average density. Masses of these centrally dense regions are in the range of 0.30 to 6.89 M$_\odot$. {\it For the first time}, our higher resolution observations (0.8$'' \sim $ 320 au) further reveal that one of the cores shows clear signatures of fragmentation; such individual substructures/fragments have sizes of 800 -1700 au, masses of 0.08 to 0.84 M$_\odot$, densities of $2 - 8\times 10^7$ $cm^{-3}$ and separations of $\sim 1200$ au. The substructures are massive enough ($\gtrsim 0.1~M_\odot$) to form young stellar objects and are likely examples of the earliest stage of stellar embryos which can lead to widely ($\sim$ 1200 au) separated multiple systems.