论文标题

几何静电粒子算法在非结构化网格上

Geometric Electrostatic Particle-In-Cell Algorithm on Unstructured Meshes

论文作者

Wang, Zhenyu, Qin, Hong, Sturdevant, Benjamin, Chang, C. S.

论文摘要

我们在二维(2D)非结构化网格上提出了一种几何粒子(PIC)算法,用于研究磁化等离子体中的静电扰动。在这种方法中,离子被视为完全动力学颗粒,并且通过绝热响应描述电子。 PIC方法是从非结构化网格上的离散变异原理得出的。为了保留系统的几何结构,离散的变分原理要求使用惠特尼1形式插值电场,使用惠特尼0形式沉积电荷,并且电场通过离散的外部计算计算。该算法已应用于2D磁化等离子体中的离子伯恩斯坦波(IBW)。 IBW在矩形区域中的模拟分散关系与理论结果非常吻合。在具有固定边界条件的2D圆形区域中,IBW的频谱和本本特征结构是根据仿真确定的。我们比较了从离散变化原理得出的几何图片算法的能量保守特性与非结构化网格上的先前PIC方法的能量保存属性。比较表明,新的PIC算法显着改善了能源保护性能。

We present a geometric Particle-in-Cell (PIC) algorithm on two-dimensional (2D) unstructured meshes for studying electrostatic perturbations in magnetized plasmas. In this method, ions are treated as fully kinetic particles, and electrons are described by the adiabatic response. The PIC method is derived from a discrete variational principle on unstructured meshes. To preserve the geometric structure of the system, the discrete variational principle requires that the electric field is interpolated using Whitney 1-forms, the charge is deposited using Whitney 0-forms, and the electric field is computed by discrete exterior calculus. The algorithm has been applied to study the Ion Bernstein Wave (IBW) in 2D magnetized plasmas. The simulated dispersion relations of the IBW in a rectangular region agree well with theoretical results. In a 2D circular region with the fixed boundary condition, the spectrum and eigenmode structures of the IBW are determined from simulation. We compare the energy conservation property of the geometric PIC algorithm derived from the discrete variational principle with that of previous PIC methods on unstructured meshes. The comparison shows that the new PIC algorithm significantly improves the energy conservation property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源