论文标题

高保真超导量子处理器通过激光解压缩transmon Qubit

High-fidelity superconducting quantum processors via laser-annealing of transmon qubits

论文作者

Zhang, Eric J., Srinivasan, Srikanth, Sundaresan, Neereja, Bogorin, Daniela F., Martin, Yves, Hertzberg, Jared B., Timmerwilke, John, Pritchett, Emily J., Yau, Jeng-Bang, Wang, Cindy, Landers, William, Lewandowski, Eric P., Narasgond, Adinath, Rosenblatt, Sami, Keefe, George A., Lauer, Isaac, Rothwell, Mary Beth, McClure, Douglas T., Dial, Oliver E., Orcutt, Jason S., Brink, Markus, Chow, Jerry M.

论文摘要

在维持高保真量子门的同时,扩展量子位的数量仍然是量子计算的关键挑战。目前,可以积极使用以> 50 Qubits的超导量子处理器。对于此类系统,固定频率传输由于其长度连贯性和噪声免疫力而具有吸引力。但是,由于精确的相对频率要求,缩放固定频率体系结构证明了具有挑战性的挑战。在这里,我们采用激光退火来选择性地将Transmon Qubits调整为所需的频率模式。超过数百个退火量子的统计数据表明,经验调整精度为18.5 MHz,对量子相干性没有可测量的影响。我们量化了调整后65 QUIT的处理器上的门误差统计数据,中位两数Quibent的Fidelity为98.7%。基线调整统计量产生的频率等效性精度为4.7 MHz,足以超过1000克水平的高收益缩放。展望未来,我们预计选择性激光退火将在扩展固定频率体系结构中发挥核心作用。

Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50-qubits are actively available. For such systems, fixed-frequency transmons are attractive due to their long coherence and noise immunity. However, scaling fixed-frequency architectures proves challenging due to precise relative frequency requirements. Here we employ laser annealing to selectively tune transmon qubits into desired frequency patterns. Statistics over hundreds of annealed qubits demonstrate an empirical tuning precision of 18.5 MHz, with no measurable impact on qubit coherence. We quantify gate error statistics on a tuned 65-qubit processor, with median two-qubit gate fidelity of 98.7%. Baseline tuning statistics yield a frequency-equivalent resistance precision of 4.7 MHz, sufficient for high-yield scaling beyond 1000-qubit levels. Moving forward, we anticipate selective laser annealing to play a central role in scaling fixed-frequency architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源