论文标题
在弗里德兰德域内的巨大时间内,波浪和klein-gordon方程的分散估计值
Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain
论文作者
论文摘要
我们通过充分利用了苛刻的时空定位以及对在给定的大时可能越过的波浪数量的精确估计,证明了弗里德兰德域内的波和klein-gordon方程的全局时间分散。此外,我们在低频率,较大的时间制度中发现了克莱因·戈登和波动方程之间的显着差异,在那儿,克莱因·戈登表现出更糟糕的衰变,与平坦空间不同。
We prove global in time dispersion for the wave and the Klein-Gordon equation inside the Friedlander domain by taking full advantage of the space-time localization of caustics and a precise estimate of the number of waves that may cross at a given, large time. Moreover, we uncover a significant difference between Klein-Gordon and the wave equation in the low frequency, large time regime, where Klein-Gordon exhibits a worse decay that the wave, unlike in the flat space.