论文标题
强大的飞机冲突解决轨迹预测不确定性
Robust aircraft conflict resolution under trajectory prediction uncertainty
论文作者
论文摘要
我们解决了轨迹预测不确定性之下的飞机冲突解决问题。我们认为飞机速度向量可能由于天气效应(例如风或测量误差)而受到干扰。这种扰动可能会影响飞机轨迹预测,该预测在确保空中交通管制中的飞行安全方面起着关键作用。我们的目标是在存在这种扰动的情况下解决飞机冲突解决问题,并确保将飞机分开以实现不确定数据。我们提出了一个不确定性模型,其中将飞机速度表示为随机变量,而不确定性集则假定为多面体。我们考虑了一种强大的优化方法,并将提出的不确定性模型嵌入了用于解决飞机冲突的最先进的数学编程公式中。然后,我们采用Bertsimas和Sim(2004)的方法来制定强大的对应物。我们使用Dias等人提出的复杂数量重新制定和约束生成算法。 (2020a)在文献的基准实例上解决了所得的非凸优化问题。我们的数值实验表明,与确定性案例相比,可以考虑飞机速度的$ \ pm 5 \%$的扰动,而不会显着影响目标函数。我们的测试还表明,对于更大程度的不确定性,几个实例未能承认无冲突的解决方案,从而突出了飞机冲突解决中现有的风险因素。我们试图通过进一步分析前后飞机轨迹来解释这种行为。我们的发现表明,大多数不可行的实例既具有相对较低的总飞机成对最小距离,又有大量冲突。
We address the aircraft conflict resolution problem under trajectory prediction uncertainty. We consider that aircraft velocity vectors may be perturbed due to weather effects, such as wind, or measurement errors. Such perturbations may affect aircraft trajectory prediction which plays a key role in ensuring flight safety in air traffic control. Our goal is to solve the aircraft conflict resolution problem in the presence of such perturbations and guarantee that aircraft are separated for any realization of the uncertain data. We propose an uncertainty model wherein aircraft velocities are represented as random variables and the uncertainty set is assumed to be polyhedral. We consider a robust optimization approach and embed the proposed uncertainty model within state-of-the-art mathematical programming formulations for aircraft conflict resolution. We then adopt the approach of Bertsimas and Sim (2004) to formulate the robust counterpart. We use the complex number reformulation and the constraint generation algorithm proposed by Dias et al. (2020a) to solve the resulting nonconvex optimization problem on benchmarking instances of the literature. Our numerical experiments reveal that perturbations of the order of $\pm 5\%$ on aircraft velocities can be accounted for without significantly impacting the objective function compared to the deterministic case. Our tests also show that for greater levels of uncertainty, several instances fail to admit conflict-free solutions, thus highlighting existing risk factors in aircraft conflict resolution. We attempt to explain this behavior by further analyzing pre- and post-optimization aircraft trajectories. Our findings show that most infeasible instances have both a relatively low total aircraft pairwise minimal distance and a high number of conflicts.