论文标题
HXRG在红外探测器附近的缓冲模式操作的性能优势
Performance advantages of buffered mode operation of HxRG near infrared detectors
论文作者
论文摘要
Teledyne HXRG检测器具有多功能和可编程的输出选项,可在各种配置中操作,例如慢缓慢,缓冲缓冲,快速缓冲或无盖模式,以优化给定应用程序的检测器性能。通常,在ESO中,对于低噪声操作,检测器以缓慢的无封闭模式进行操作。尽管慢速无盖模式为外部前置放大器电子设备提供了一个简单的接口,但该模式下的检测器操作可能会降低像素频率响应,并且在读出通道之间的较高的电气串扰。在ELT(Micado,Harmoni和Metis)的第一代仪器所需的探测器系统中,进行了一项练习,以评估探测器在缓慢缓冲模式下的噪声,速度和串扰性能。已经设计了一个测试前置放大器,该选项可在缓冲或不受欢迎的情况下操作H2RG检测器,并且不使用参考输出,因此可以在不同模式之间进行直接性能比较。本文提出了性能优势,例如增加像素频率响应,消除读数通道之间的电串扰以及在缓冲模式操作中的噪声性能。这些改进使我们能够使用ELT仪器的探测器低温电子和检测器控制器电子来实现相同的帧读数时间,从而大大降低了仪器中相关的低温力学复杂性。
The Teledyne HxRG detectors have versatile and programmable output options to allow operation of them in a variety of configurations such as slow unbuffered, slow buffered, fast buffered or unbuffered modes to optimise the detector performance for a given application. Normally at ESO, for low noise operation, the detectors are operated in slow unbuffered mode. Whilst the slow unbuffered mode offers a simple interface to the external preamplifier electronics, the detector operation in this mode can suffer from reduced pixel frequency response and higher electrical crosstalk between the readout channels. In the context of the detector systems required for the first generation instruments of the ELT (MICADO, HARMONI and METIS), an exercise was undertaken to evaluate the noise, speed and crosstalk performance of the detectors in the slow buffered mode. A test preamplifier has been designed with options to operate a H2RG detector in buffered or unbuffered and with or without using the reference output, so a direct performance comparison can be made between different modes. This paper presents the performance advantages such as increased pixel frequency response, elimination of electrical crosstalk between the readout channels and the noise performance in the buffered mode operation. These improvements allow us to achieve the same frame readout time using half the detector cryogenic electronics and detector controller electronics for the ELT instruments, which significantly reduces the associated cryomechanical complexities in the instrument.