论文标题

平衡索引的学习参数会影响最大化

Learning Parameters for Balanced Index Influence Maximization

论文作者

Ma, Manqing, Korniss, Gyorgy, Szymanski, Boleslaw K.

论文摘要

影响最大化是找到最小的节点集的任务,这些节点在社交网络中的激活可以触发激活的级联,该级联级联级别达到了目标网络覆盖范围,在这种级别上,阈值规则决定了影响的结果。这个问题是NP坚硬的,它已经针对发现有效的启发式方法产生了大量的研究。我们专注于{\ it平衡索引}算法,该算法依靠三个参数将其性能调整为给定的网络结构。我们建议使用有监督的机器学习方法进行此类调整。我们为参数调整选择了最具影响力的图形功能。然后,使用基于随机步行的图形采样,我们从给定的合成和大型现实世界网络中创建了小快照。使用详尽的搜索,我们找到了这些快照的高精度值,以用作地面真相。然后,我们在快照上训练机器学习模型,并将此模型应用于现实字网络以找到最佳的BI参数。我们将这些参数应用于采样的现实世界网络,以测量以这种方式找到的启动器集合的质量。我们使用各种现实世界的网络来验证我们的方法与其他启发式官。

Influence maximization is the task of finding the smallest set of nodes whose activation in a social network can trigger an activation cascade that reaches the targeted network coverage, where threshold rules determine the outcome of influence. This problem is NP-hard and it has generated a significant amount of recent research on finding efficient heuristics. We focus on a {\it Balance Index} algorithm that relies on three parameters to tune its performance to the given network structure. We propose using a supervised machine-learning approach for such tuning. We select the most influential graph features for the parameter tuning. Then, using random-walk-based graph-sampling, we create small snapshots from the given synthetic and large-scale real-world networks. Using exhaustive search, we find for these snapshots the high accuracy values of BI parameters to use as a ground truth. Then, we train our machine-learning model on the snapshots and apply this model to the real-word network to find the best BI parameters. We apply these parameters to the sampled real-world network to measure the quality of the sets of initiators found this way. We use various real-world networks to validate our approach against other heuristic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源