论文标题

$ V $ - 学术中的刚性空间上的线束

Line bundles on rigid spaces in the $v$-topology

论文作者

Heuer, Ben

论文摘要

对于完美的固体空间$ x $,$ \ mathbb q_p $上的$ k $ k $ k $ k $ k $ k $ of MATHBB q_p $,我们调查了相关钻石$ x^\ diamondsuit $的$ v $ - picard group与$ x $的分析PICARD组不同。为此,我们构造了一个左侧的“ hodge- tate对数”序列\ [0 \ to \ mathrm {pic} _ {\ mathrm {an}}}(x)\ to \ to \ mathrm {pic} _v(pic} _v(x^\ diamondssuit)\ to h^to h^0(x^\ diamond) 我们推断出一些分析性标准,这些标准具有$ p $ - ad的模块化表格。 对于代数关闭的$ k $,我们表明,如果$ x $适当或一维,则该序列也是正确的。相比之下,我们表明,对于仿射空间$ \ mathbb a^n $,hodge-tate Googarithm的图像恰好由封闭的差异组成。 随之而来的是,可以将$ v $ - 线束的分裂解释为希格斯捆绑包。对于适当的$ x $,我们使用它来构建排名第一的$ p $ adic simpson通信。

For a smooth rigid space $X$ over a perfectoid field extension $K$ of $\mathbb Q_p$, we investigate how the $v$-Picard group of the associated diamond $X^\diamondsuit$ differs from the analytic Picard group of $X$. To this end, we construct a left-exact "Hodge--Tate logarithm" sequence \[0\to \mathrm{Pic}_{\mathrm{an}}(X)\to \mathrm{Pic}_v(X^\diamondsuit)\to H^0(X,Ω_X^1)\{-1\}.\] We deduce some analyticity criteria which have applications to $p$-adic modular forms. For algebraically closed $K$, we show that the sequence is also right-exact if $X$ is proper or one-dimensional. In contrast, we show that for the affine space $\mathbb A^n$, the image of the Hodge--Tate logarithm consists precisely of the closed differentials. It follows that up to a splitting, $v$-line bundles may be interpreted as Higgs bundles. For proper $X$, we use this to construct the $p$-adic Simpson correspondence of rank one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源