论文标题

多体定位问题中的量子牙

Quantum ergodicity in the many-body localization problem

论文作者

Monteiro, Felipe, Tezuka, Masaki, Altland, Alexander, Huse, David A., Micklitz, Tobias

论文摘要

我们将页面的结果概括为随机纯状态的纠缠熵,以逼真的多体系系统的多体征收属性。这一扩展得出了两个主要结论:首先,对于增加疾病的恒定能量的“外壳”支持系统的本征态仅填充其完整的FOCK空间的一小部分,并且在合成高维随机晶格系统中不存在固有相关性。其次,在多体定位过渡之前的所有方案中,单个特征态均在这些壳上热分布。这些结果通过与SYK模型的精确对角线化相比证实,与最近文献中讨论的多体系统中的“非共性扩展状态”的概念有所不同。

We generalize Page's result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the "shells" of constant energy supporting a system's eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of "non-ergodic extended states" in many-body systems discussed in the recent literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源