论文标题

BMS代数作为轻度重力中庞加莱对称的扩展

BMS algebra as an extension of the Poincaré symmetry in light-cone gravity

论文作者

Ananth, Sudarshan, Brink, Lars, Majumdar, Sucheta

论文摘要

我们分析了在四个维度的轻型重力中庞加莱对称的局部扩展。我们使用一种形式主义,在两个物理自由度上代表代数,一个具有螺旋$ 2 $,另一个带有螺旋性$ -2 $。该表示是非线性的,而轻曲动量之一是哈密顿量,因此是代数的非线性发电机。我们发现,这可以在局部实现,庞加莱代数扩展到BMS对称性,而无需提及渐近限制。

We analyze possible local extensions of the Poincaré symmetry in light-cone gravity in four dimensions. We use a formalism where we represent the algebra on the two physical degrees of freedom, one with helicity $2$ and the other with helicity $-2$. The representation is non-linearly realized and one of the light-cone momenta is the Hamiltonian, which is hence a non-linear generator of the algebra. We find that this can be locally realized and the Poincaré algebra extended to the BMS symmetry without any reference to asymptotic limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源