论文标题

等谱旋转的随机矩阵理论

Random Matrix Theory of the Isospectral twirling

论文作者

Oliviero, Salvatore F. E., Leone, Lorenzo, Caravelli, Francesco, Hamma, Alioscia

论文摘要

我们通过同一旋​​转的概念提出了探针的系统构造,以扩大参考文献[1]的范围和方法,从而使哈密顿量的同一合奏动力学构成。哈密​​顿人的相关集合是由显着光谱概率分布定义的。高斯单位合奏(GUE)描述了一类量子混沌汉密尔顿人,而光谱对应于泊松和高斯对角线集合(GDE),描述了非混乱的,可整合的动力学。我们在分析量子多体系统中计算了几类重要数量的同一旋转:框架电势,Loschmidt Echos,Echos,Otocs,Otocs,Otocs,纠缠,三方相互信息,相干性,与平衡状态的距离,在量子电池中工作,并在量子电池中工作。此外,我们通过随机矩阵理论在这些集合中进行平均值,并显示这些量如何清楚地将混乱的量子动力学与非混沌动力学分开。

We present a systematic construction of probes into the dynamics of isospectral ensembles of Hamiltonians by the notion of Isospectral twirling, expanding the scopes and methods of ref.[1]. The relevant ensembles of Hamiltonians are those defined by salient spectral probability distributions. The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCs, Entanglement, Tripartite mutual information, coherence, distance to equilibrium states, work in quantum batteries and extension to CP-maps. Moreover, we perform averages in these ensembles by random matrix theory and show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源