论文标题
单体扩散下的统计修改
Statistics modification under monomer diffusion
论文作者
论文摘要
单个原子在纳米结构表面上的扩散和聚合以纯粹的统计方式处理。由此,得出了分析公式,从已知的初始状态,在所有个体原子的扩散后,它在表面上给出了最终的簇大小分布。出乎意料的是,事实证明,这些公式允许获得统计定律,从而在仅均匀成核的情况下出现等于2的临界胚芽时,并在成核的情况下,一旦原子的沉积完成,临界细菌的大小直方图。
The diffusion and coalescence of individual atoms on a nanostructured surface are treated in a purely statistical way. From this, analytical formulas are derived which, from a known initial state, give the final cluster size distribution on a surface after the diffusion of all the individual atoms. Unexpectedly, it turns out that these formulas allow obtaining a statistical law giving the size histogram of the clusters when only homogeneous nucleation occurs with a critical germ equal to 2, and in the situation where nucleation starts once the deposition of the atoms is completed.