论文标题

表征模块化机器人的通用可重构性

Characterizing Universal Reconfigurability of Modular Pivoting Robots

论文作者

Akitaya, Hugo A., Demaine, Erik D., Gonczi, Andrei, Hendrickson, Dylan H., Hesterberg, Adam, Korman, Matias, Korten, Oliver, Lynch, Jayson, Parada, Irene, Sacristán, Vera

论文摘要

我们提供有效的算法和硬度结果,以在六边形网格中的两个连接配置之间重新配置。我们认为的重新配置移动是“枢轴”,其中六角模块围绕与另一个模块共享的顶点旋转。在对模块化机器人进行的先前工作之后,我们定义了两个自然组合的六角形旋转动力的动作:限制和猴子的移动。当我们允许这两个动作时,我们会提出第一个通用重新配置算法,该算法使用$ O(n^3)$猴子移动在任意两个连接的配置之间进行转换。该结果与平方的类似问题形成了鲜明的对比,那里有一个刚性的示例没有单个旋转移动来保留连接性。另一方面,如果我们仅允许受到限制的动作,我们就会证明重新配置问题已成为PSPACE完成。此外,我们表明,与己糖相比,旋转正方形的重新配置问题是pspace-complete,而不管允许的一组旋转动作。在此过程中,我们加强了Demaine等人的还原框架。 [Fun'18]我们认为独立利益。

We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using $O(n^3)$ monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源