论文标题
表征模块化机器人的通用可重构性
Characterizing Universal Reconfigurability of Modular Pivoting Robots
论文作者
论文摘要
我们提供有效的算法和硬度结果,以在六边形网格中的两个连接配置之间重新配置。我们认为的重新配置移动是“枢轴”,其中六角模块围绕与另一个模块共享的顶点旋转。在对模块化机器人进行的先前工作之后,我们定义了两个自然组合的六角形旋转动力的动作:限制和猴子的移动。当我们允许这两个动作时,我们会提出第一个通用重新配置算法,该算法使用$ O(n^3)$猴子移动在任意两个连接的配置之间进行转换。该结果与平方的类似问题形成了鲜明的对比,那里有一个刚性的示例没有单个旋转移动来保留连接性。另一方面,如果我们仅允许受到限制的动作,我们就会证明重新配置问题已成为PSPACE完成。此外,我们表明,与己糖相比,旋转正方形的重新配置问题是pspace-complete,而不管允许的一组旋转动作。在此过程中,我们加强了Demaine等人的还原框架。 [Fun'18]我们认为独立利益。
We give both efficient algorithms and hardness results for reconfiguring between two connected configurations of modules in the hexagonal grid. The reconfiguration moves that we consider are "pivots", where a hexagonal module rotates around a vertex shared with another module. Following prior work on modular robots, we define two natural sets of hexagon pivoting moves of increasing power: restricted and monkey moves. When we allow both moves, we present the first universal reconfiguration algorithm, which transforms between any two connected configurations using $O(n^3)$ monkey moves. This result strongly contrasts the analogous problem for squares, where there are rigid examples that do not have a single pivoting move preserving connectivity. On the other hand, if we only allow restricted moves, we prove that the reconfiguration problem becomes PSPACE-complete. Moreover, we show that, in contrast to hexagons, the reconfiguration problem for pivoting squares is PSPACE-complete regardless of the set of pivoting moves allowed. In the process, we strengthen the reduction framework of Demaine et al. [FUN'18] that we consider of independent interest.