论文标题
在Min-Max遗憾标准下的二进制整数编程问题的迭代双重替代方法
An Iterated Dual Substitution Approach for Binary Integer Programming Problems under the Min-Max Regret Criterion
论文作者
论文摘要
我们考虑在间隔目标系数下使用Min-Max后悔目标功能的二进制整数编程问题。我们提出了一个新的启发式框架,我们称之为迭代的双重替代(IDS)算法。 IDS算法迭代地调用了双重替代启发式,并将其排除在以前迭代中已经检查的任何解决方案。在ID中,我们使用最佳的基于阶段的引理来提高性能。我们将ID应用于四个典型的组合优化问题:背包问题,多维背包问题,广义分配问题以及集合覆盖问题。对于多维背包问题,我们将IDS方法与两种广泛用于Min-Max遗憾标准的问题的算法进行比较:一种固定的Scenario方法和一种分支和切割方法。在广泛的基准实例上,计算实验的结果表明,所提出的IDS方法在大多数经过测试的实例上表现最佳。对于背包问题,广义分配问题以及设置覆盖问题,我们将ID与最新结果进行比较。 IDS算法成功地更新了许多基准实例的最著名记录。
We consider binary integer programming problems with the min-max regret objective function under interval objective coefficients. We propose a new heuristic framework, which we call the iterated dual substitution (iDS) algorithm. The iDS algorithm iteratively invokes a dual substitution heuristic and excludes from the search space any solution already checked in previous iterations. In iDS, we use a best-scenario-based lemma to improve performance. We apply iDS to four typical combinatorial optimization problems: the knapsack problem, the multidimensional knapsack problem, the generalized assignment problem, and the set covering problem. For the multidimensional knapsack problem, we compare the iDS approach with two algorithms widely used for problems with the min-max regret criterion: a fixed-scenario approach, and a branch-and-cut approach. The results of computational experiments on a broad set of benchmark instances show that the proposed iDS approach performs best on most tested instances. For the knapsack problem, the generalized assignment problem, and the set covering problem, we compare iDS with state-of-the-art results. The iDS algorithm successfully updates best known records for a number of benchmark instances.