论文标题
聚类高维气象场景:结果和性能指数
Clustering high dimensional meteorological scenarios: results and performance index
论文作者
论文摘要
Reseau de Transportd'Electricité(RTE)是法国主要的电力网络运营经理,并致力于了解气候时间序列数据的大量资源和努力。我们在这里讨论问题以及分组和选择代表RTE提供的气候模拟中可能气候场景的代表的方法。所使用的数据由法国地理位置网格上的200种不同场景的温度时间序列组成。应将这些聚类聚类以检测有关温度曲线的共同模式,并有助于选择网络模拟的代表性场景,而网络模拟又可用于能量优化。我们首先表明,用于聚类的距离的选择对结果的含义具有很大的影响:取决于所使用的距离类型,即空间或时间模式。然后,我们讨论了微调距离选择的难度(结合了降低程序),并提出了一种基于精心设计的索引的方法。
The Reseau de Transport d'Electricité (RTE) is the French main electricity network operational manager and dedicates large number of resources and efforts towards understanding climate time series data. We discuss here the problem and the methodology of grouping and selecting representatives of possible climate scenarios among a large number of climate simulations provided by RTE. The data used is composed of temperature times series for 200 different possible scenarios on a grid of geographical locations in France. These should be clustered in order to detect common patterns regarding temperatures curves and help to choose representative scenarios for network simulations, which in turn can be used for energy optimisation. We first show that the choice of the distance used for the clustering has a strong impact on the meaning of the results: depending on the type of distance used, either spatial or temporal patterns prevail. Then we discuss the difficulty of fine-tuning the distance choice (combined with a dimension reduction procedure) and we propose a methodology based on a carefully designed index.