论文标题
在线行动识别
Online Action Recognition
论文作者
论文摘要
计划中的认可旨在找到一组观察和知识库(例如目标状态,计划或领域理论)的代理意图,目标或活动。在这项工作中,我们介绍了在线行动识别的问题。它在于在开放的世界中认识到最能解释从最初是空的一阶剥离措施的知识库中部分可观察到的状态过渡的计划行动。我们将其视为一个优化问题,并提出了两种算法来解决它:操作统一(AU)和通过统一(OARU)识别在线行动识别。前者建立在逻辑统一的基础上,并使用加权部分MaxSat概括了两个输入动作。后者寻找图书馆内的动作,解释了观察到的过渡。如果有这样的行动,它会概括地利用AU,以这种方式构建AU层次结构。否则,OARU在图书馆中插入了一个琐碎的基础动作(TGA),该动作只是解释了这种过渡。我们报告了国际规划竞赛和PDDLGYM的基准的结果,在该基准中,OARU在该基准方面对专家知识准确地认可了行动,并显示了实时绩效。
Recognition in planning seeks to find agent intentions, goals or activities given a set of observations and a knowledge library (e.g. goal states, plans or domain theories). In this work we introduce the problem of Online Action Recognition. It consists in recognizing, in an open world, the planning action that best explains a partially observable state transition from a knowledge library of first-order STRIPS actions, which is initially empty. We frame this as an optimization problem, and propose two algorithms to address it: Action Unification (AU) and Online Action Recognition through Unification (OARU). The former builds on logic unification and generalizes two input actions using weighted partial MaxSAT. The latter looks for an action within the library that explains an observed transition. If there is such action, it generalizes it making use of AU, building in this way an AU hierarchy. Otherwise, OARU inserts a Trivial Grounded Action (TGA) in the library that explains just that transition. We report results on benchmarks from the International Planning Competition and PDDLGym, where OARU recognizes actions accurately with respect to expert knowledge, and shows real-time performance.