论文标题
HR-DEPTH:高分辨率自我监督的单眼估计
HR-Depth: High Resolution Self-Supervised Monocular Depth Estimation
论文作者
论文摘要
使用图像序列作为唯一的源自范围的源,自我监督的学习在单核局部估计中表现出巨大的潜力。尽管人们试图使用高分辨率来进行深度估计,但预测的准确性并没有得到显着提高。在这项工作中,我们发现这一原因来自不准确的深度估计嵌入梯度区域,从而使双线性插值ER - 随着分辨率的增加而逐渐消失。为了在大梯度区域获得更准确的深度估计,有必要获得具有空间和语义信息的高分辨率特征。因此,我们提出了一种改进的hr-depth,并采用两种有效的策略:(1)重新设计depthnet中的跳过连接,以获得更好的高分辨率特征,(2)提出功能融合挤压和激素(FSE)模块,以更有效地融合功能,以供应更有效。在高分辨率和低分辨率下具有最小参数元素的方法。此外,以前的方法基于相当复杂和具有大量参数的深网,这些参数限制了它们的重大应用。因此,我们还构建了一个使用Mobilenetv3作为编码器的轻型网络。实验表明,轻巧的网络可以与许多大型模型(如Monodepth2)在高分辨率上只有20%参数的同在。所有代码和模型将在https://github.com/shawlyu/hr-depth上找到。
Self-supervised learning shows great potential in monoculardepth estimation, using image sequences as the only source ofsupervision. Although people try to use the high-resolutionimage for depth estimation, the accuracy of prediction hasnot been significantly improved. In this work, we find thecore reason comes from the inaccurate depth estimation inlarge gradient regions, making the bilinear interpolation er-ror gradually disappear as the resolution increases. To obtainmore accurate depth estimation in large gradient regions, itis necessary to obtain high-resolution features with spatialand semantic information. Therefore, we present an improvedDepthNet, HR-Depth, with two effective strategies: (1) re-design the skip-connection in DepthNet to get better high-resolution features and (2) propose feature fusion Squeeze-and-Excitation(fSE) module to fuse feature more efficiently.Using Resnet-18 as the encoder, HR-Depth surpasses all pre-vious state-of-the-art(SoTA) methods with the least param-eters at both high and low resolution. Moreover, previousstate-of-the-art methods are based on fairly complex and deepnetworks with a mass of parameters which limits their realapplications. Thus we also construct a lightweight networkwhich uses MobileNetV3 as encoder. Experiments show thatthe lightweight network can perform on par with many largemodels like Monodepth2 at high-resolution with only20%parameters. All codes and models will be available at https://github.com/shawLyu/HR-Depth.