论文标题
学习自动3D船中心线提取的混合表示
Learning Hybrid Representations for Automatic 3D Vessel Centerline Extraction
论文作者
论文摘要
从3D医学图像中提取自动血管对于血管疾病诊断至关重要。现有基于卷积神经网络(CNN)的方法在从3D图像中分割出如此薄的管状结构时可能会遭受提取的血管的不连续性。我们认为,保留提取的血管的连续性需要考虑全球几何形状。但是,3D卷积在计算上效率低下,这禁止3D CNN来自足够大的接收场,以捕获整个图像中的全局提示。在这项工作中,我们提出了一种混合代表学习方法来应对这一挑战。主要思想是使用CNN在图像作物中学习血管的局部外观,同时使用另一个点云网络来学习整个图像中血管的全局几何形状。在推断中,提出的方法使用CNN提取了血管的局部段,使用点云网络根据全局几何形状对每个段进行分类,并最终使用最短路径算法连接属于同一容器的所有段。这种组合导致了一种有效,完全自动和模板的方法,可从3D图像中提取中心线。我们验证了CTA数据集上提出的方法,并证明了与传统和基于CNN的基准相比,其性能优越。
Automatic blood vessel extraction from 3D medical images is crucial for vascular disease diagnoses. Existing methods based on convolutional neural networks (CNNs) may suffer from discontinuities of extracted vessels when segmenting such thin tubular structures from 3D images. We argue that preserving the continuity of extracted vessels requires to take into account the global geometry. However, 3D convolutions are computationally inefficient, which prohibits the 3D CNNs from sufficiently large receptive fields to capture the global cues in the entire image. In this work, we propose a hybrid representation learning approach to address this challenge. The main idea is to use CNNs to learn local appearances of vessels in image crops while using another point-cloud network to learn the global geometry of vessels in the entire image. In inference, the proposed approach extracts local segments of vessels using CNNs, classifies each segment based on global geometry using the point-cloud network, and finally connects all the segments that belong to the same vessel using the shortest-path algorithm. This combination results in an efficient, fully-automatic and template-free approach to centerline extraction from 3D images. We validate the proposed approach on CTA datasets and demonstrate its superior performance compared to both traditional and CNN-based baselines.