论文标题

Octa-500:光学连贯性层析成像造影研究的视网膜数据集研究

OCTA-500: A Retinal Dataset for Optical Coherence Tomography Angiography Study

论文作者

Li, Mingchao, Huang, Kun, Xu, Qiuzhuo, Yang, Jiadong, Zhang, Yuhan, Ji, Zexuan, Xie, Keren, Yuan, Songtao, Liu, Qinghuai, Chen, Qiang

论文摘要

光学相干断层扫描(OCTA)是一种新型的成像方式,已在眼科和神经科学研究中广泛使用,可观察视网膜血管和微血管系统。但是,公开可用的八颗数据集仍然稀缺。在本文中,我们介绍了以500名受试者的两个视野(FOV)的范围(FOV)下的八颗八八章,该数据集载有八角中的八八章数据集。该数据集提供了丰富的图像和注释,包括两种模式(OCT/八卷),六种类型的投影,四种类型的文本标签(年龄/性别/眼睛/病)和七种类型的分割标签(大容器/毛细管/毛细管/动脉/静脉/静脉/静脉/2D FAZ/3D FAZ/3D FAZ/RETINAL LAESER)。然后,我们提出了一个称为CAVF的多对象分割任务,该任务集成了统一框架下的毛细管分割,动脉分割,静脉分割和FAZ分割。此外,我们将3D到2D图像投影网络(IPN)优化为IPN-V2,以用作分割基准之一。实验结果表明,IPN-V2在CAVF任务上的IPN比IPN提高了约10%。最后,我们进一步研究了几个数据集特征的影响:训练集大小,模型输入(OCT/OCTA,3D体积/2D投影),基线网络和疾病。数据集和代码可在以下网址公开获取:https://ieee-dataport.org/open-access/octa-500。

Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age / gender / eye / disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an ~10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源