论文标题

张量流的故障注射器:评估随机硬件故障对深CNN的影响

Fault Injectors for TensorFlow: Evaluation of the Impact of Random Hardware Faults on Deep CNNs

论文作者

Beyer, Michael, Morozov, Andrey, Valiev, Emil, Schorn, Christoph, Gauerhof, Lydia, Ding, Kai, Janschek, Klaus

论文摘要

如今,深度学习(DL)几乎增强了包括安全至关重要地区在内的每个工业部门。下一代安全标准将为基于DL的应用定义适当的验证技术,并提出足够的容错机制。与任何其他软件一样,基于DL的应用程序也容易受到RAM和CPU寄存器中发生的常见随机硬件故障的影响。这样的故障会导致无声数据损坏。因此,开发有助于评估DL组件在此类故障存在下运行的方法和工具至关重要。在本文中,我们分别引入了两个新的故障注入(FI)框架Injecttf和InjectTF2,分别用于张曲流1和Tensorflow 2。这两个框架都在GitHub上可用,并允许将随机故障置于神经网络(NN)中。为了证明框架的可行性,我们还提出了使用两个图像集在四个基于VGG的卷积NNS上进行的FI实验的结果。结果表明,特定数学操作和NNS层的输出中的随机位会如何影响分类精度。这些结果有助于确定最关键的操作和层,比较功能相似的NN的可靠性特征,并引入选择性的容错机制。

Today, Deep Learning (DL) enhances almost every industrial sector, including safety-critical areas. The next generation of safety standards will define appropriate verification techniques for DL-based applications and propose adequate fault tolerance mechanisms. DL-based applications, like any other software, are susceptible to common random hardware faults such as bit flips, which occur in RAM and CPU registers. Such faults can lead to silent data corruption. Therefore, it is crucial to develop methods and tools that help to evaluate how DL components operate under the presence of such faults. In this paper, we introduce two new Fault Injection (FI) frameworks InjectTF and InjectTF2 for TensorFlow 1 and TensorFlow 2, respectively. Both frameworks are available on GitHub and allow the configurable injection of random faults into Neural Networks (NN). In order to demonstrate the feasibility of the frameworks, we also present the results of FI experiments conducted on four VGG-based Convolutional NNs using two image sets. The results demonstrate how random bit flips in the output of particular mathematical operations and layers of NNs affect the classification accuracy. These results help to identify the most critical operations and layers, compare the reliability characteristics of functionally similar NNs, and introduce selective fault tolerance mechanisms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源