论文标题

柔性杆的2D包装中的回路变形

Deformation of loops in 2D packing of flexible rods

论文作者

Sobral, T. A., de Holanda, V. H., Leal, F. C. B., Saraiva, T. T.

论文摘要

将长柔性杆注射到二维结构域中产生了通过弹性理论,堆积分析和分形几何形状进行的通常研究的复杂模式。 “循环”是一个自然形成的单个vertex实体。尚未讨论每个循环在2D填料中的弹性特征的作用。在这项工作中,我们指出了复杂结构中给定环的形状如何允许估计局部变形和力。首先,我们构建了一组对称的自由循环和执行的压缩实验。然后,通过使用图像处理来分析紧密的包装配置。我们发现,环路的尺寸是否受到限制,请遵守对变形的相同依赖性。结果与基于细丝的2D弹性理论的简单模型一致,其中杆在其接触点之间采用了Euler弹性的形状。力和存储的能量是从分析表达式的数值整合中获得的。在另一个实验中,我们获得了变形环的压缩力证实了理论发现。讨论了循环形状的重要性,我们希望理论曲线可以在未来的研究中允许统计考虑。

The injection of a long flexible rod into a two-dimensional domain yields a complex pattern commonly studied through elasticity theory, packing analysis, and fractal geometries. "Loop" is a one-vertex entity that is naturally formed in this system. The role of the elastic features of each loop in 2D packing has not yet been discussed. In this work, we point out how the shape of a given loop in the complex structure allows estimating local deformations and forces. First, we build sets of symmetric free loops and performed compression experiments. Then, tight packing configurations are analyzed by using image processing. We found that the dimensions of the loops, confined or not, obey the same dependence on the deformation. The result is consistent with a simple model based on 2D elastic theory for filaments, where the rod adopts the shape of Euler's elasticas between its contact points. The force and the stored energy are obtained from numerical integration of the analytic expressions. In an additional experiment, we obtain that the compression force for deformed loops corroborates the theoretical findings. The importance of the shape of the loop is discussed and we hope that the theoretical curves may allow statistical considerations in future investigations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源