论文标题

通过无偏爱和首选项目的学习来进行强大的建议

Learning over no-Preferred and Preferred Sequence of items for Robust Recommendation

论文作者

Burashnikova, Aleksandra, Clausel, Marianne, Laclau, Charlotte, Iutzeller, Frack, Maximov, Yury, Amini, Massih-Reza

论文摘要

在本文中,我们提出了一种理论上建立的顺序策略,用于对隐式反馈进行训练大规模推荐系统(RS),主要是以点击的形式。所提出的方法包括最大程度地减少由一系列非点击项目构成的连续项目的块上的成对排名损失,然后为每个用户单击一个。我们提出了该策略的两个变体,其中使用动量方法或基于梯度的方法更新模型参数。为了防止对某些目标项目(主要是由于机器人)的异常点击更新参数,我们在每个用户的更新数量上引入了较高和较低的阈值。这些阈值估计在训练集中的块数量分布上。阈值会影响RS的决定,并暗示对向用户显示的项目的分布进行转变。此外,我们提供了两种算法的收敛分析,并在六个大规模集合中证明了它们的实践效率,包括不同的排名措施和计算时间。

In this paper, we propose a theoretically founded sequential strategy for training large-scale Recommender Systems (RS) over implicit feedback, mainly in the form of clicks. The proposed approach consists in minimizing pairwise ranking loss over blocks of consecutive items constituted by a sequence of non-clicked items followed by a clicked one for each user. We present two variants of this strategy where model parameters are updated using either the momentum method or a gradient-based approach. To prevent from updating the parameters for an abnormally high number of clicks over some targeted items (mainly due to bots), we introduce an upper and a lower threshold on the number of updates for each user. These thresholds are estimated over the distribution of the number of blocks in the training set. The thresholds affect the decision of RS and imply a shift over the distribution of items that are shown to the users. Furthermore, we provide a convergence analysis of both algorithms and demonstrate their practical efficiency over six large-scale collections, both regarding different ranking measures and computational time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源