论文标题
来自位置依赖性非交通性的最小和最大长度
Minimal and maximal lengths from position-dependent noncommutativity
论文作者
论文摘要
Fring和Al在他们的论文中,标题为“来自位置依赖性非交易性的字符串”在两个空间维度上引入了一组新的非交通空间换向关系。已经表明,此空间空间非交换性中引入的任何基本对象都类似于弦乐。考虑到这一结果,我们将Fring和Al的开创性工作推广到以下情况,即来自Heisenberg的不确定性关系的广义版本引起的位置依赖性的非交通性和最小动量的长度。最大长度的存在与粒子长度上的额外的一阶项的存在有关,该长度提供了我们分析与其分析的基本差异。这个最大长度打破了众所周知的时空问题。我们建立了这个非交通空间的不同表示,最后我们研究了这些新变量中的一些基本且有趣的量子机械系统。
Fring and al in their paper entitled "Strings from position-dependent noncommutativity" have introduced a new set of noncommutative space commutation relations in two space dimensions. It had been shown that any fundamental objects introduced in this space-space non-commutativity are string-like. Taking this result into account, we generalize the seminal work of Fring and al to the case that there is also a maximal length from position-dependent noncommutativity and minimal momentum arising from generalized versions of Heisenberg's uncertainty relations. The existence of maximal length is related to the presence of an extra, first order term in particle's length that provides the basic difference of our analysis with theirs. This maximal length breaks up the well known singularity problem of space time. We establish different representations of this noncommutative space and finally we study some basic and interesting quantum mechanical systems in these new variables.