论文标题

眼周嵌入学习并一致的知识蒸馏

Periocular Embedding Learning with Consistent Knowledge Distillation from Face

论文作者

Jung, Yoon Gyo, Park, Jaewoo, Low, Cheng Yaw, Chai, Jacky Chen Long, Tiong, Leslie Ching Ow, Teoh, Andrew Beng Jin

论文摘要

眼周生物识别(眼周的外围区域)是面部的协作替代品,尤其是当脸部被遮挡或掩盖面部时。但是,实际上,唯一的眼周生物识别捕获了最小的面部特征,因此缺乏歧视性信息,尤其是在野生环境中。为了解决这些问题,我们将歧视性信息从面部转移,以支持使用知识蒸馏的眼周网络的训练。具体而言,我们利用面部图像进行眼周嵌入学习,但仅眼周用于身份识别或验证。为了通过面部有效增强眼周的嵌入,我们提出了一致的知识蒸馏(CKD),该知识蒸馏(CKD)在跨预测和特征层之间施加了面部和眼周网络之间的一致性。我们发现,在预测层上施加一致性使(1)从面部图像中提取全局歧视关系信息以及(2)信息从面部网络到眼周网络的有效传输。特别是,一致性将预测单元定期提取和存储面部图像的深层阶层关系信息。 (3)另一方面,特征层的一致性使眼周特征可与身份 - irrex-relevant属性稳健。总体而言,CKD赋予了唯一的眼周网络,以产生可靠的歧视性嵌入,以便在野外识别周围识别。我们从理论上和经验上验证了CKD中蒸馏机制的核心原理,发现CKD等同于用新颖的面向稀疏性的常规化器标记平滑的,从而有助于网络预测捕获全局歧视性关系。广泛的实验表明,CKD在标准的眼周识别基准数据集上实现了最先进的结果。

Periocular biometric, the peripheral area of the ocular, is a collaborative alternative to the face, especially when the face is occluded or masked. However, in practice, sole periocular biometric capture the least salient facial features, thereby lacking discriminative information, particularly in wild environments. To address these problems, we transfer discriminatory information from the face to support the training of a periocular network by using knowledge distillation. Specifically, we leverage face images for periocular embedding learning, but periocular alone is utilized for identity identification or verification. To enhance periocular embeddings by face effectively, we proposeConsistent Knowledge Distillation (CKD) that imposes consistency between face and periocular networks across prediction and feature layers. We find that imposing consistency at the prediction layer enables (1) extraction of global discriminative relationship information from face images and (2) effective transfer of the information from the face network to the periocular network. Particularly, consistency regularizes the prediction units to extract and store profound inter-class relationship information of face images. (3) The feature layer consistency, on the other hand, makes the periocular features robust against identity-irrelevant attributes. Overall, CKD empowers the sole periocular network to produce robust discriminative embeddings for periocular recognition in the wild. We theoretically and empirically validate the core principles of the distillation mechanism in CKD, discovering that CKD is equivalent to label smoothing with a novel sparsity-oriented regularizer that helps the network prediction to capture the global discriminative relationship. Extensive experiments reveal that CKD achieves state-of-the-art results on standard periocular recognition benchmark datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源