论文标题

癌症复发时机的巨大偏差

Large Deviations of Cancer Recurrence Timing

论文作者

Hanagal, Pranav, Leder, Kevin, Wang, Zicheng

论文摘要

我们研究疾病复发时间的大偏差事件。特别是,我们有兴趣建模由于突变诱导的耐药性引起的癌症治疗失败。我们首先提出了这种现象的两种分支过程模型,其中对治疗敏感的细胞的初始群体可以产生对治疗具有抗性的突变体。在此模型中,我们研究了两个随机时间,即复发时间和交叉时间。复发时间定义为突变细胞的种群大小超过药物敏感细胞的初始种群大小的给定比例。跨界时间定义为抗性细胞种群首次主导总人群。我们在复发时间和交叉时间都建立了概率结果的收敛性。然后,我们为早期复发和早期交叉事件的较大偏差率开发表达。我们表征了较大的偏差率和速率函数如何取决于突变细胞群的初始大小。我们最终研究了在确定性衰减敏感人群的特殊情况下,以复发的突变克隆数量来调节的早期复发率很大。我们发现,如果复发发生在预测法律限制之前,则可能会增加复发时间的克隆数量。

We study large deviation events in the timing of disease recurrence. In particular, we are interested in modeling cancer treatment failure due to mutation-induced drug resistance. We first present a two-type branching process model of this phenomenon, where an initial population of cells that are sensitive to therapy can produce mutants that are resistant to the therapy. In this model, we investigate two random times, the recurrence time and the crossover time. Recurrence time is defined as the first time that the population size of mutant cells exceeds a given proportion of the initial population size of drug-sensitive cells. Crossover time is defined as the first time that the resistant cell population dominates the total population. We establish convergence in probability results for both recurrence and crossover time. We then develop expressions for the large deviations rate of early recurrence and early crossover events. We characterize how the large deviation rates and rate functions depend on the initial size of the mutant cell population. We finally look at the large deviations rate of early recurrence conditioned on the number of mutant clones present at recurrence in the special case of a deterministically decaying sensitive population. We find that if recurrence occurs before the predicted law of large numbers limit then there will likely be an increase in the number of clones present at recurrence time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源