论文标题
DPG特征值问题的近似
DPG approximation of eigenvalue problems
论文作者
论文摘要
在本文中,讨论了拉普拉斯特征值问题的不连续的彼得罗夫 - 盖尔金近似。我们特别考虑了问题的原始和超弱公式,并证明了收敛及先验误差估计。此外,我们提出了两个可能的误差估计器,并执行相应的后验错误分析。理论结果通过数值确认,并表明误差估计器可用于设计最佳收敛的自适应方案。
In this paper, the discontinuous Petrov--Galerkin approximation of the Laplace eigenvalue problem is discussed. We consider in particular the primal and ultra weak formulations of the problem and prove the convergence together with a priori error estimates. Moreover, we propose two possible error estimators and perform the corresponding a posteriori error analysis. The theoretical results are confirmed numerically and it is shown that the error estimators can be used to design an optimally convergent adaptive scheme.