论文标题
现实的微观结构模拟器(RMS):在显微镜图像的三维细胞分割中扩散的蒙特卡洛模拟
Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images
论文作者
论文摘要
背景:扩散的蒙特卡洛模拟通常用作模型验证工具,因为它们特别适合在复杂的组织微地球镜中产生扩散MRI信号。 新方法:在这里,我们描述了在显微镜图像中三维(3D)体素分割中实现蒙特卡洛模拟的详细信息。使用角反射器的概念,我们在很大程度上减少了多个单元之间模拟扩散和交换的计算负载。基于GPU的并行计算进一步实现了精度。 结果:我们对从小鼠大脑分离的白质轴突扩散的模拟显示了其在验证生物物理模型中的价值。此外,我们提供了实施离散扩散过程的理论背景,并考虑粒子膜反射和渗透事件的有限步骤效应,这是有效地模拟与不规则边界相互作用的,空间可变的扩散系数和交换所需的。 与现有方法进行比较:据我们所知,这是由众多逼真的细胞组成的基材中MR信号模拟的第一个蒙特卡洛管道,这是其可渗透和不规则形状的膜。 结论:拟议的RMS管道使得能够快速准确地模拟逼真的组织微观几个几个地几个地几个地几个地几个,以及与其他MR对比的相互作用。目前,RMS专注于静态组织中扩散,交换以及T2 NMR松弛的模拟,有可能直接考虑易感性引起的T2*效果和流动。
Background: Monte Carlo simulations of diffusion are commonly used as a model validation tool as they are especially suitable for generating the diffusion MRI signal in complicated tissue microgeometries. New method: Here we describe the details of implementing Monte Carlo simulations in three-dimensional (3d) voxelized segmentations of cells in microscopy images. Using the concept of the corner reflector, we largely reduce the computational load of simulating diffusion within and exchange between multiple cells. Precision is further achieved by GPU-based parallel computations. Results: Our simulation of diffusion in white matter axons segmented from a mouse brain demonstrates its value in validating biophysical models. Furthermore, we provide the theoretical background for implementing a discretized diffusion process, and consider the finite-step effects of the particle-membrane reflection and permeation events, needed for efficient simulation of interactions with irregular boundaries, spatially variable diffusion coefficient, and exchange. Comparison with existing methods: To our knowledge, this is the first Monte Carlo pipeline for MR signal simulations in a substrate composed of numerous realistic cells, accounting for their permeable and irregularly-shaped membranes. Conclusions: The proposed RMS pipeline makes it possible to achieve fast and accurate simulations of diffusion in realistic tissue microgeometry, as well as the interplay with other MR contrasts. Presently, RMS focuses on simulations of diffusion, exchange, and T1 and T2 NMR relaxation in static tissues, with a possibility to straightforwardly account for susceptibility-induced T2* effects and flow.