论文标题
在不断发展的钟表网络中的混乱和超基因的外观
Appearance of chaos and hyperchaos in evolving pendulum network
论文作者
论文摘要
确定性混乱的研究仍然是非线性动力学领域的重要问题之一。对混乱的研究的兴趣既存在于低维动力系统和大型耦合振荡器中。在本文中,我们研究了稳定扭矩的局部耦合相同摆的链中时空混乱的出现。对出现(消失)和混乱的特性的研究是由于以下方面的变化而进行的:(i)由于此问题耗散的影响而引起的元素的各个特性,以及(ii)所考虑的整个集合的特性,取决于相互作用的元素数量以及它们之间的连接强度。结果表明,通过固定耦合力和元素数的合奏中耗散的增加可能会导致混乱的出现,这是由于周期性旋转旋转运动的分叉的一系列级联或不变性的Tori Destincuction Bifurciation的分叉而导致的。通过添加或排除一个或多个元素,可以在合奏中发生混乱和超基础。此外,混乱会很难出现,因为在这种情况下,控制参数是离散的。耦合强度对混乱发生的影响是特异的。混乱的出现与小和中间的耦合发生,是由于存在各种隔离旋转模式区域的重叠而引起的。这些区域的边界是分析确定的,并在数值实验中确认。如果耦合强度足够强大,则链中的混沌机制将不存在。
The study of deterministic chaos continues to be one of the important problems in the field of nonlinear dynamics. Interest in the study of chaos exists both in low-dimensional dynamical systems and in large ensembles of coupled oscillators. In this paper, we study the emergence of spatio-temporal chaos in chains of locally coupled identical pendulums with constant torque. The study of the scenarios of the emergence (disappearance) and properties of chaos is done as a result of changes in: (i) the individual properties of elements due to the influence of dissipation in this problem, and (ii) the properties of the entire ensemble under consideration, determined by the number of interacting elements and the strength of the connection between them. It is shown that an increase of dissipation in an ensemble with a fixed coupling force and elements number can lead to the appearance of chaos as a result of a cascade of period doubling bifurcations of periodic rotational motions or as a result of invariant tori destruction bifurcation. Chaos and hyperchaos can occur in an ensemble by adding or excluding one or more elements. Moreover, chaos arises hard, since in this case the control parameter is discrete. The influence of the coupling strength on the occurrence of chaos is specific. The appearance of chaos occurs with small and intermediate coupling and is caused by the overlap of the various out-of-phase rotational modes regions existence. The boundaries of these areas are determined analytically and confirmed in a numerical experiment. Chaotic regimes in the chain do not exist if the coupling strength is strong enough.