论文标题

Kapustin-ongitten方程式和非亚伯杂货理论

The Kapustin-Witten equations and nonabelian Hodge theory

论文作者

Liu, Chih-Chung, Rayan, Steven, Tanaka, Yuuji

论文摘要

$ \ Mathcal {n} = 4 $ Super Yang-Mills理论的拓扑转折是Kapustin-witten方程,这是一个由$ t \ in \ in \ Mathbb {p}^1 $进行的四个manifold参数的仪表理论方程组。该参数对应于扭曲中两个超级电荷的线性组合。当$ t = 0 $而四个manifold是一个紧凑的kähler表面时,方程将成为辛普森方程,希钦最初在紧凑的里曼表面上研究,在中岛的作品和第三名作者中独立证明。同时,在唐纳森 - 康德·希奇·辛普森(Nonabelian Hodge)理论中有一个$λ$ - 连接的概念,其中$λ$在$ \ mathbb {p}^1 $中也有$λ$的价值。在光滑的投影型品种($λ= 0 $)上,在可消失的chern班级的模量空间与半精密本地系统的模量空间($λ= 1 $)中的模量空间之间变化。在本文中,我们利用了Nonabelian Hodge理论所提供的信件来描述Kapustin和Witten的模量解决方案与方程式之间的关系,$ t = 0 $和$ t \ in \ Mathbb {r} \ setMinus \ {0然后,我们通过计算$ t = 0 $和$ t \ in \ Mathbb {r} \ setMinus \ {0 \} $的每个模量空间的预期维度,为平滑,封闭的四个manifold提供了更通用的这种关系形式的支持证据。

Arising from a topological twist of $\mathcal{N} = 4$ super Yang-Mills theory are the Kapustin-Witten equations, a family of gauge-theoretic equations on a four-manifold parametrized by $t\in\mathbb{P}^1$. The parameter corresponds to a linear combination of two super charges in the twist. When $t=0$ and the four-manifold is a compact Kähler surface, the equations become the Simpson equations, which was originally studied by Hitchin on a compact Riemann surface, as demonstrated independently in works of Nakajima and the third-named author. At the same time, there is a notion of $λ$-connection in the nonabelian Hodge theory of Donaldson-Corlette-Hitchin-Simpson in which $λ$ is also valued in $\mathbb{P}^1$. Varying $λ$ interpolates between the moduli space of semistable Higgs sheaves with vanishing Chern classes on a smooth projective variety (at $λ=0$) and the moduli space of semisimple local systems on the same variety (at $λ=1$) in the twistor space. In this article, we utilise the correspondence furnished by nonabelian Hodge theory to describe a relation between the moduli spaces of solutions to the equations by Kapustin and Witten at $t=0$ and $t \in \mathbb{R} \setminus \{ 0 \}$ on a smooth, compact Kähler surface. We then provide supporting evidence for a more general form of this relation on a smooth, closed four-manifold by computing its expected dimension of the moduli space for each of $t=0$ and $t \in \mathbb{R} \setminus \{ 0 \}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源