论文标题
基于数据的管理方程发现
Data-based Discovery of Governing Equations
论文作者
论文摘要
传统上,最常见的机械模型以数学形式呈现,以解释给定的物理现象。另一方面,机器学习算法提供了一种机制,可以将输入数据映射到输出,而无需显式描述生成数据的基础物理过程。我们提出了一个基于数据的物理发现(DPD)框架,以自动从观察到的数据中发现管程。没有对模型结构的先验定义,首先会发现方程式的自由形式,然后根据可用数据进行校准和验证。除了观察到的数据外,DPD框架还可以利用可用的先验物理模型和域专家反馈。当可用的模型可用时,DPD框架可以发现象征性表示的加法或乘法校正项。校正项可以是现有输入变量的函数,或者是新引入的变量的函数。如果没有先验模型,DPD框架会发现一个基于数据的新的独立模型,该模型管理观察值。我们证明了拟议框架在航空航天行业的现实应用程序上的性能。
Most common mechanistic models are traditionally presented in mathematical forms to explain a given physical phenomenon. Machine learning algorithms, on the other hand, provide a mechanism to map the input data to output without explicitly describing the underlying physical process that generated the data. We propose a Data-based Physics Discovery (DPD) framework for automatic discovery of governing equations from observed data. Without a prior definition of the model structure, first a free-form of the equation is discovered, and then calibrated and validated against the available data. In addition to the observed data, the DPD framework can utilize available prior physical models, and domain expert feedback. When prior models are available, the DPD framework can discover an additive or multiplicative correction term represented symbolically. The correction term can be a function of the existing input variable to the prior model, or a newly introduced variable. In case a prior model is not available, the DPD framework discovers a new data-based standalone model governing the observations. We demonstrate the performance of the proposed framework on a real-world application in the aerospace industry.