论文标题
在相互作用的M51样星系中对星形成分子气体的模拟:云种群统计
Simulations of the star-forming molecular gas in an interacting M51-like galaxy: cloud population statistics
论文作者
论文摘要
为了研究分子云如何在银河尺度上对不同的环境条件反应,我们提出了一个巨大分子云的目录,从$ \ sim 10 $ 〜m $ _ {\ odot} $的质量下降,从整个相互作用的M51类样星系和可比的分离的银河系的模拟中。我们的模型包括时间依赖的气体化学,用于恒星形成的水槽颗粒和超新星反馈,这意味着我们不依赖基于阈值密度的恒星形成食谱,并且可以遵循冷分子相的物理。我们在模拟的给定时间段上提取巨大的分子云并分析其性质。在我们模拟的星系的光盘中,螺旋臂似乎仅像雪地,收集气体和云层而不会显着影响其特性。另一方面,在银河系的中心,环境条件会导致更大,更大的云层。尽管星系相互作用对云质量和大小的影响很小,但它确实促进了反向旋转云的形成。我们发现,乍一看,所鉴定的云似乎在很大程度上是重力的,但是对分子星形介质的层次结构进行了更仔细的分析,表明存在大量的病毒参数,并且从未结合到主要结构的平稳过渡到密集结构。因此,关于云似乎是病毒实体的常见观察可能是由于CO明亮的发射突出了该分层结合序列中的特定水平。发现的重力结构的小部分表明,低银河恒星形成效率可能是通过云形成和初始崩溃的过程来确定的。
To investigate how molecular clouds react to different environmental conditions at a galactic scale, we present a catalogue of giant molecular clouds resolved down to masses of $\sim 10$~M$_{\odot}$ from a simulation of the entire disc of an interacting M51-like galaxy and a comparable isolated galaxy. Our model includes time-dependent gas chemistry, sink particles for star formation and supernova feedback, meaning we are not reliant on star formation recipes based on threshold densities and can follow the physics of the cold molecular phase. We extract giant molecular clouds at a given timestep of the simulations and analyse their properties. In the disc of our simulated galaxies, spiral arms seem to act merely as snowplows, gathering gas and clouds without dramatically affecting their properties. In the centre of the galaxy, on the other hand, environmental conditions lead to larger, more massive clouds. While the galaxy interaction has little effect on cloud masses and sizes, it does promote the formation of counter-rotating clouds. We find that the identified clouds seem to be largely gravitationally unbound at first glance, but a closer analysis of the hierarchical structure of the molecular interstellar medium shows that there is a large range of virial parameters with a smooth transition from unbound to mostly bound for the densest structures. The common observation that clouds appear to be virialised entities may therefore be due to CO bright emission highlighting a specific level in this hierarchical binding sequence. The small fraction of gravitationally bound structures found suggests that low galactic star formation efficiencies may be set by the process of cloud formation and initial collapse.