论文标题

概率图形模型基础,用于使预测数字双胞胎大规模启用

A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale

论文作者

Kapteyn, Michael G., Pretorius, Jacob V. R., Willcox, Karen E.

论文摘要

需要进行统一的数学公式,以从通过自定义实现构建的一次性数字双胞胎转变为按大规模的数字双胞胎实现。这项工作提出了一个概率图形模型,作为数字双胞胎及其相关物理资产的形式数学表示。我们创建了作为一组耦合动力系统的资产 - 双win系统的抽象,随着时间的流逝,通过其各自的状态空间发展,并通过观察到的数据和控制输入进行交互。该耦合系统作为概率图形模型的形式定义使我们能够利用贝叶斯统计,动力学系统和控制理论的完善理论和方法。拟议的数字双胞胎模型的声明性和一般性使其严格而灵活,从而使其在各种应用领域的应用中进行了大规模应用。我们演示了该模型是如何实例化的,以实现无人驾驶飞机(UAV)的结构性数字双胞胎。使用来自物理无人机资产的实验数据对数字双胞胎进行校准。然后在一个合成的示例中说明了它在动态决策中的使用,在该示例中,无人机经历飞机损伤事件,并且使用传感器数据动态更新了数字双胞胎。图形模型基础可确保数字双校准和更新过程是原则上,统一的,并能够扩展到整个数字双胞胎。

A unifying mathematical formulation is needed to move from one-off digital twins built through custom implementations to robust digital twin implementations at scale. This work proposes a probabilistic graphical model as a formal mathematical representation of a digital twin and its associated physical asset. We create an abstraction of the asset-twin system as a set of coupled dynamical systems, evolving over time through their respective state-spaces and interacting via observed data and control inputs. The formal definition of this coupled system as a probabilistic graphical model enables us to draw upon well-established theory and methods from Bayesian statistics, dynamical systems, and control theory. The declarative and general nature of the proposed digital twin model make it rigorous yet flexible, enabling its application at scale in a diverse range of application areas. We demonstrate how the model is instantiated to enable a structural digital twin of an unmanned aerial vehicle (UAV). The digital twin is calibrated using experimental data from a physical UAV asset. Its use in dynamic decision making is then illustrated in a synthetic example where the UAV undergoes an in-flight damage event and the digital twin is dynamically updated using sensor data. The graphical model foundation ensures that the digital twin calibration and updating process is principled, unified, and able to scale to an entire fleet of digital twins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源