论文标题
高属的两分图的局部限制
Local limits of bipartite maps with prescribed face degrees in high genus
论文作者
论文摘要
我们研究了具有规定的面部度的均匀高属二分属地图的局部限制。我们证明了平面无限地图的融合,Q-ibpms既表现出空间马尔可夫特性,又表现出双曲线行为。因此,我们观察到类似的局部行为,对于广泛的随机高属地图模型,这可以看见是普遍性的。我们的结果涵盖了所有在根面的预期程度在极限中保持有限的制度。这是在同一位作者对高属三角剖分ARXIV的一项工作之后:1902.00492。
We study the local limits of uniform high genus bipartite maps with prescribed face degrees. We prove the convergence towards a family of infinite maps of the plane, the q-IBPMs, which exhibit both a spatial Markov property and a hyperbolic behaviour. Therefore, we observe a similar local behaviour for a wide class of models of random high genus maps, which can be seen as a result of universality. Our results cover all the regimes where the expected degree of the root face remains finite in the limit. This follows a work by the same authors on high genus triangulations arXiv:1902.00492.