论文标题

痕量距离和保真度估计的变分量子算法

Variational Quantum Algorithms for Trace Distance and Fidelity Estimation

论文作者

Chen, Ranyiliu, Song, Zhixin, Zhao, Xuanqiang, Wang, Xin

论文摘要

估计量子数据之间的差异对于量子计算至关重要。但是,由于量子数据相似性的典型表征,痕量距离和量子保真度被认为是指数性的,因此通常可以评估。在这项工作中,我们在近期量子设备上引入了这两种距离测量的混合量子古典算法,在这些距离设备上不需要输入状态。首先,我们介绍了变异痕量距离估计(VTDE)算法。我们特别提供了通过局部测量来提取任何遗产矩阵的所需光谱信息的技术。然后,在单个辅助量子位的帮助下,从该技术得出了一种用于痕量距离估计的新型变异算法。值得注意的是,由于局部成本功能,VTDE可以避免与对数深度电路的贫瘠高原问题。其次,我们介绍了变分的保真度估计(VFE)算法。我们结合了Uhlmann的定理和纯化的自由,将估计任务转化为具有固定纯化输入的辅助系统上的统一系统的优化问题。然后,我们提供净化子例程以完成翻译。两种算法通过数值模拟和实验实现验证,对于随机生成的混合状态表现出很高的精度。

Estimating the difference between quantum data is crucial in quantum computing. However, as typical characterizations of quantum data similarity, the trace distance and quantum fidelity are believed to be exponentially-hard to evaluate in general. In this work, we introduce hybrid quantum-classical algorithms for these two distance measures on near-term quantum devices where no assumption of input state is required. First, we introduce the Variational Trace Distance Estimation (VTDE) algorithm. We in particular provide the technique to extract the desired spectrum information of any Hermitian matrix by local measurement. A novel variational algorithm for trace distance estimation is then derived from this technique, with the assistance of a single ancillary qubit. Notably, VTDE could avoid the barren plateau issue with logarithmic depth circuits due to a local cost function. Second, we introduce the Variational Fidelity Estimation (VFE) algorithm. We combine Uhlmann's theorem and the freedom in purification to translate the estimation task into an optimization problem over a unitary on an ancillary system with fixed purified inputs. We then provide a purification subroutine to complete the translation. Both algorithms are verified by numerical simulations and experimental implementations, exhibiting high accuracy for randomly generated mixed states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源