论文标题
基于可见区域分割和形状先验的Amodal分割
Amodal Segmentation Based on Visible Region Segmentation and Shape Prior
论文作者
论文摘要
几乎所有现有的Amodal分割方法都通过使用与整个图像相对应的功能来推断被遮挡区域的推断。这是针对人类的阿莫达尔感知,在该感知中,人类使用可见部分和目标的形状知识来推断被遮挡的区域。为了模仿人类的行为并解决了学习中的歧义,我们提出了一个框架,它首先估计一个粗糙的可见面膜和粗大的阿莫迪尔面具。然后,基于粗糙的预测,我们的模型通过集中在可见区域并利用记忆中的形状来渗透Amodal面具。通过这种方式,可以抑制与背景和遮挡相对应的特征,以进行Amodal面膜估计。因此,阿莫达面具不会受到闭塞的影响相同的可见区域的影响。形状先验的杠杆作用使Amodal面膜估计更加稳健和合理。我们提出的模型在三个数据集上进行了评估。实验表明,我们提出的模型的表现优于现有的最新方法。形状先验的可视化表明,代码书中的特定类别特征具有一定的解释性。
Almost all existing amodal segmentation methods make the inferences of occluded regions by using features corresponding to the whole image. This is against the human's amodal perception, where human uses the visible part and the shape prior knowledge of the target to infer the occluded region. To mimic the behavior of human and solve the ambiguity in the learning, we propose a framework, it firstly estimates a coarse visible mask and a coarse amodal mask. Then based on the coarse prediction, our model infers the amodal mask by concentrating on the visible region and utilizing the shape prior in the memory. In this way, features corresponding to background and occlusion can be suppressed for amodal mask estimation. Consequently, the amodal mask would not be affected by what the occlusion is given the same visible regions. The leverage of shape prior makes the amodal mask estimation more robust and reasonable. Our proposed model is evaluated on three datasets. Experiments show that our proposed model outperforms existing state-of-the-art methods. The visualization of shape prior indicates that the category-specific feature in the codebook has certain interpretability.