论文标题
量子访问记忆对通用噪声的弹性
Resilience of quantum random access memory to generic noise
论文作者
论文摘要
量子随机访问存储器(QRAM) - 存储经典数据但允许在叠加中执行查询的内存是实现多种量子算法所必需的。虽然QRAM的幼稚实现非常容易受到破坏的影响,因此无法扩展,但有人认为铲斗旅QRAM架构[Giovannetti等人,Phys。莱特牧师。 100 160501(2008)]对噪声具有很高的弹性,而查询的不忠仅与内存尺寸进行对数缩放。然而,在先前的分析中,这种有利的缩放直接遵循了人为的噪声模型的使用,因此留下了一个问题,即实验实现是否会真正享有所谓的缩放优势。在这项工作中,我们研究了完全一般性的碳对QRAM的影响。我们的主要结果是证明了这种有利的不忠缩放适用于任意误差通道(例如,去极化噪声和相干误差)。我们的证明将这种噪声弹性的起源确定为记忆组件之间有限的纠缠,它还揭示了可以在保留噪声弹性的同时进行大量的建筑简化。我们使用新型的经典算法对这些结果进行数值验证,以有效地模拟嘈杂的QRAM电路。我们的发现表明,QRAM可以在现实的嘈杂设备中使用现有硬件实现,并且在没有量子误差校正的情况下进行了高保真查询。此外,我们还证明,当使用量子误差校正时,存储桶 - 旅架构的好处持续存在,在这种情况下,该方案提供了提高的硬件效率和对逻辑错误的弹性。
Quantum random access memory (QRAM)--memory which stores classical data but allows queries to be performed in superposition--is required for the implementation of numerous quantum algorithms. While naive implementations of QRAM are highly susceptible to decoherence and hence not scalable, it has been argued that the bucket brigade QRAM architecture [Giovannetti et al., Phys. Rev. Lett. 100 160501 (2008)] is highly resilient to noise, with the infidelity of a query scaling only logarithmically with the memory size. In prior analyses, however, this favorable scaling followed directly from the use of contrived noise models, thus leaving open the question of whether experimental implementations would actually enjoy the purported scaling advantage. In this work, we study the effects of decoherence on QRAM in full generality. Our main result is a proof that this favorable infidelity scaling holds for arbitrary error channels (including, e.g., depolarizing noise and coherent errors). Our proof identifies the origin of this noise resilience as the limited entanglement among the memory's components, and it also reveals that significant architectural simplifications can be made while preserving the noise resilience. We verify these results numerically using a novel classical algorithm for the efficient simulation of noisy QRAM circuits. Our findings indicate that QRAM can be implemented with existing hardware in realistically noisy devices, and that high-fidelity queries are possible without quantum error correction. Furthermore, we also prove that the benefits of the bucket-brigade architecture persist when quantum error correction is used, in which case the scheme offers improved hardware efficiency and resilience to logical errors.