论文标题
人类活动识别的对比预测编码
Contrastive Predictive Coding for Human Activity Recognition
论文作者
论文摘要
特征提取对于使用人体运动传感器的人类活动识别(HAR)至关重要。最近,学习的表示形式已成功使用,为手动设计功能提供了有希望的替代方案。我们的工作着重于有效地使用少量标记数据以及对无标记数据的机会性开发,这些数据在移动和无处不在的计算方案中直接收集。我们假设并证明,明确考虑在表示级别的传感器数据的时间性在挑战性场景中起着有效HAR的重要作用。我们将对比度预测编码(CPC)框架引入人类活动识别,该框架捕获了传感器数据流的长期时间结构。通过对现实识别任务的一系列实验评估,我们证明了其改善HAR的有效性。基于CPC的预训练是自我监督的,可以将所得的学说可以集成到标准活动链中。当仅提供少量标记的培训数据时,它会大大改善识别性能,从而证明我们方法的实际价值。
Feature extraction is crucial for human activity recognition (HAR) using body-worn movement sensors. Recently, learned representations have been used successfully, offering promising alternatives to manually engineered features. Our work focuses on effective use of small amounts of labeled data and the opportunistic exploitation of unlabeled data that are straightforward to collect in mobile and ubiquitous computing scenarios. We hypothesize and demonstrate that explicitly considering the temporality of sensor data at representation level plays an important role for effective HAR in challenging scenarios. We introduce the Contrastive Predictive Coding (CPC) framework to human activity recognition, which captures the long-term temporal structure of sensor data streams. Through a range of experimental evaluations on real-life recognition tasks, we demonstrate its effectiveness for improved HAR. CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains. It leads to significantly improved recognition performance when only small amounts of labeled training data are available, thereby demonstrating the practical value of our approach.