论文标题
有效的全拉格朗日求解器,用于与振荡波转换器建模波相互作用
An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave energy converter
论文作者
论文摘要
在本文中,我们提出了一种有效,准确且完全拉格朗日的数值求解器,用于与振荡波能转换器(OWSC)建模波相互作用。关键想法是将Sphinxsys(在统一平滑的粒子流体动力(SPH)框架中使用的开源多物理库,simbody为多体动力学提出了面向对象的应用程序编程界面(API)。更确切地说,使用sphinxsys的基于Riemann的弱压缩SPH方法解决了波动动力学及其与OWSC的相互作用,并且由Simbody库计算了实体运动学。数值实验表明,与实验室实验相比,所提出的求解器可以准确预测皮瓣上的波升高,皮瓣旋转和波载。尤其是,新求解器通过CPU成本分析显示了优化的计算性能,并与文献中的商业软件包ANSYS和其他基于SPH的求解器进行比较。此外,将线性阻尼器应用于模仿功率起飞(PTO)系统,以研究其对OWSC流体动力学特性和能量收集效率的影响。此外,本求解器用于使用聚焦波方法对极端波条件进行建模,以研究在这种极端波条件下OWSC的极端载荷和运动。值得注意的是,尽管此处使用的模型验证是底部铰链振荡波转换器(WEC),但获得的数值结果表明,拟议的求解器对在高性能WEC设计中的未来应用中具有希望的潜力。
In this paper, we present an efficient, accurate and fully Lagrangian numerical solver for modeling wave interaction with oscillating wave energy converter (OWSC). The key idea is to couple SPHinXsys, an open-source multi-physics library in unified smoothed particle hydrodynamic (SPH) framework, with Simbody which presents an object-oriented Application Programming Interface (API) for multi-body dynamics. More precisely, the wave dynamics and its interaction with OWSC is resolved by Riemann-based weakly-compressible SPH method using SPHinXsys, and the solid-body kinematics is computed by Simbody library. Numerical experiments demonstrate that the proposed solver can accurately predict the wave elevations, flap rotation and wave loading on the flap in comparison with laboratory experiment. In particularly, the new solver shows optimized computational performance through CPU cost analysis and comparison with commercial software package ANSYS FLUENT and other SPH-based solvers in literature. Furthermore, a linear damper is applied for imitating the power take-off (PTO) system to study its effects on the hydrodynamics properties of OWSC and efficiency of energy harvesting. In addition, the present solver is used to model extreme wave condition using the focused wave approach to investigate the extreme loads and motions of OWSC under such extreme wave conditions. It worth noting that though the model validation used herein is a bottom hinged oscillating Wave Energy Converter (WEC), the obtained numerical results show promising potential of the proposed solver to future applications in the design of high-performance WECs.