论文标题

在嵌入空间中的保守电流

Conformal Conserved Currents in Embedding Space

论文作者

Fortin, Jean-François, Ma, Wen-Jie, Prilepina, Valentina, Skiba, Witold

论文摘要

我们使用嵌入式空间形式主义研究了Lorentz组的任意不可约表示的保守潮流。在操作员产品扩展的帮助下,我们首先表明可以通过仅考虑两点和三点相关函数来对保护条件进行充分研究。然后,我们在嵌入空间中找到一个明确的共形差分运算符,该操作员基于标准位置空间操作员产品扩展差异操作员$ \partial_μ$实现保护,尽管后者并没有提升以嵌入协变空间的嵌入空间。在嵌入空间中施加保护的差分运算符与在嵌入空间中使用的操作员产品扩展中使用的差分运算符$ \ MATHCAL {D} _ {ija} $。我们提供了几个示例,包括不可减少表示的保守电流,这些电流不是对称的和无可笑的。着眼于四个保守的向量电流的四点形成式自举方程式$ \ langle jjjj \ rangle $和四个能量 - 摩托张张量$ \ langle tttt \ rangle $,我们主要集中在$ \ langle jj \ nathcal的保护条件上tt \ Mathcal {O} \ rangle $。最后,我们通过确定指控的三点系数来重现并扩展同时发生的保形病房身份的后果。

We study conformal conserved currents in arbitrary irreducible representations of the Lorentz group using the embedding space formalism. With the help of the operator product expansion, we first show that conservation conditions can be fully investigated by considering only two- and three-point correlation functions. We then find an explicitly conformally-covariant differential operator in embedding space that implements conservation based on the standard position space operator product expansion differential operator $\partial_μ$, although the latter does not uplift to embedding space covariantly. The differential operator in embedding space that imposes conservation is the same differential operator $\mathcal{D}_{ijA}$ used in the operator product expansion in embedding space. We provide several examples including conserved currents in irreducible representations that are not symmetric and traceless. With an eye on four-point conformal bootstrap equations for four conserved vector currents $\langle JJJJ\rangle$ and four energy-momentum tensors $\langle TTTT\rangle$, we mostly focus on conservation conditions for $\langle JJ\mathcal{O}\rangle$ and $\langle TT\mathcal{O}\rangle$. Finally, we reproduce and extend the consequences of conformal Ward identities at coincident points by determining three-point coefficients in terms of charges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源