论文标题

基于牙龈的评级预测框架,用于不平衡建议

A Gumbel-based Rating Prediction Framework for Imbalanced Recommendation

论文作者

Wu, Yuexin, Huang, Xiaolei

论文摘要

评级预测是推荐系统的核心问题,可以量化用户对项目的偏好,但是,评级不平衡自然根基在现实世界的用户评分中引起偏见的预测并导致尾部评级的性能差。在评级预测任务中的现有方法部署加权跨凝结以重新体重训练样本,但这种方法通常假定正态分布,对称和平衡的空间。与正常假设相反,我们提出了一个小说\下划线{\ emph {g}}基于UMBEL \下划线{\ emph {v}} ariational \ supperline \ supperline {\ emph {n}} etwork Framework(gvn),以模拟按评分IMBALINGE和增强功能代表的模型。我们提出了一个基于胶状的变分编码器,以将特征转换为非正常矢量空间。其次,我们部署了一个多尺度的卷积融合网络,以整合来自评分矩阵和用户评论的用户和项目的全面视图。第三,我们采用跳过连接模块来个性化最终评级预测。我们在具有基于错误和排名的指标的五个数据集上进行了广泛的实验。关于排名和回归评估任务的实验证明,GVN可以有效地实现整个数据集的最新性能,并减少尾部评级的偏见预测。我们与各种分布(例如正常和泊松)进行了比较,并证明了基于胶囊的方法对类不足模型的有效性。

Rating prediction is a core problem in recommender systems to quantify user's preferences towards items, however, rating imbalance naturally roots in real-world user ratings that cause biased predictions and lead to poor performance on tail ratings. While existing approaches in the rating prediction task deploy weighted cross-entropy to re-weight training samples, such approaches commonly assume an normal distribution, a symmetrical and balanced space. In contrast to the normal assumption, we propose a novel \underline{\emph{G}}umbel-based \underline{\emph{V}}ariational \underline{\emph{N}}etwork framework (GVN) to model rating imbalance and augment feature representations by the Gumbel distributions. We propose a Gumbel-based variational encoder to transform features into non-normal vector space. Second, we deploy a multi-scale convolutional fusion network to integrate comprehensive views of users and items from the rating matrix and user reviews. Third, we adopt a skip connection module to personalize final rating predictions. We conduct extensive experiments on five datasets with both error- and ranking-based metrics. Experiments on ranking and regression evaluation tasks prove that the GVN can effectively achieve state-of-the-art performance across the datasets and reduce the biased predictions of tail ratings. We compare with various distributions (e.g., normal and Poisson) and demonstrate the effectiveness of Gumbel-based methods on class-imbalance modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源