论文标题

伽马射线二进制的相对论流体建模。 I.模型

Relativistic fluid modelling of gamma-ray binaries. I. The model

论文作者

Huber, David, Kissmann, Ralf, Reimer, Anita, Reimer, Olaf

论文摘要

语境。伽马射线二进制文件是辐射伽马射线中其非热发射的主要部分的系统。在风驱动的情况下,这些二进制文件被认为由旋转巨大恒星的脉冲星组成,在风碰撞中引起的冲击中加速了颗粒。目标。我们开发了一个全面的数值模型,用于激进加速颗粒的非热发射,包括流体不稳定性和轨道运动的动态效应。我们在通用二进制系统上演示了该模型。方法。该模型建立在专用的三维粒子传输模拟的基础上,该模拟动态耦合到对风相互作用的同时相对论的流体动力学模拟。在后处理步骤中,根据所得的颗粒分布和流体溶液评估了涉及同步和compton发射的麻血发射模型,并始终如一地考虑了相对论的增强和$γγ$ - 吸收恒星辐射场。该模型是作为Cronos代码的扩展而实现的。结果。在通用二进制中,风相互作用会导致形成延伸的,不对称的风碰撞区域,该区域因轨道运动的影响,混合和湍流的影响而扭曲,从而导致强烈的冲击,从而终止了脉冲风和湍流中的次要冲击。通过提出的方法,它首次可以始终如一地说明粒子传输过程中的动力冲击结构,从而产生加速颗粒的复杂分布。预测的发射延伸到广泛的能量区域,并在所有频段中具有显着的轨道调节。

Context. Gamma-ray binaries are systems that radiate the dominant part of their non-thermal emission in the gamma-ray band. In a wind-driven scenario, these binaries are thought to consist of a pulsar orbiting a massive star, accelerating particles in the shock arising in the wind collision. Aims. We develop a comprehensive, numerical model for the non-thermal emission of shock accelerated particles including the dynamical effects of fluid instabilities and orbital motion. We demonstrate the model on a generic binary system. Methods. The model is built on a dedicated three-dimensional particle transport simulation for the accelerated particles dynamically coupled to a simultaneous relativistic hydrodynamic simulation of the wind interaction. In a post-processing step, a leptonic emission model involving synchrotron and inverse Compton emission is evaluated based on resulting particle distributions and fluid solutions, consistently accounting for relativistic boosting and $γγ$-absorption in the stellar radiation field. The model is implemented as an extension to the Cronos code. Results. In the generic binary, the wind interaction leads to the formation of an extended, asymmetric wind-collision region distorted by the effects of orbital motion, mixing and turbulence giving rise to strong shocks terminating the pulsar wind and secondary shocks in the turbulent fluid flow. With the presented approach it is, for the first time, possible to consistently account for the dynamical shock structure in particle transport processes, yielding a complex distribution of accelerated particles. The predicted emission extends over a broad region of energy, with significant orbital modulation in all bands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源