论文标题
Janus:基准为物体和异常检测工作负载的商业和开源云和边缘平台
JANUS: Benchmarking Commercial and Open-Source Cloud and Edge Platforms for Object and Anomaly Detection Workloads
论文作者
论文摘要
随着物联网工作负载的不同,将计算和分析贴在收集数据的附近变得越来越重要。我们试图了解在各种可用平台上对物联网数据运行分析的性能和成本含义。这些工作负载可以是计算光线,例如传感器数据上的离群值检测或计算密集型,例如从无人机获得的视频提要中检测的对象检测。在我们的论文中,Janus,我们介绍了Compute-Light IoT工作负载和计算密集型IoT工作负载的性能/$以及计算与通信成本。此外,我们还研究了一些专有深入学习的对象检测包的优缺点,例如亚马逊重新认知,Google Vision和Azure认知服务,以与开源和可调的解决方案相比,例如更快的R-CNN(FRCNN)。我们发现,与所有其他云平台相比,AWS IoT Greengrass至少降低了2倍的延迟和1.25倍的成本,以进行计算轻型距离检测工作负载。对于计算密集型流式视频分析任务,与亚马逊,微软和Google提供的专有解决方案相比,在云VM上运行的对象检测的开发解决方案可节省美元成本,但在延迟上输了(高达6倍)。如果它在低功率的边缘设备上运行,则潜伏期低于49倍。
With diverse IoT workloads, placing compute and analytics close to where data is collected is becoming increasingly important. We seek to understand what is the performance and the cost implication of running analytics on IoT data at the various available platforms. These workloads can be compute-light, such as outlier detection on sensor data, or compute-intensive, such as object detection from video feeds obtained from drones. In our paper, JANUS, we profile the performance/$ and the compute versus communication cost for a compute-light IoT workload and a compute-intensive IoT workload. In addition, we also look at the pros and cons of some of the proprietary deep-learning object detection packages, such as Amazon Rekognition, Google Vision, and Azure Cognitive Services, to contrast with open-source and tunable solutions, such as Faster R-CNN (FRCNN). We find that AWS IoT Greengrass delivers at least 2X lower latency and 1.25X lower cost compared to all other cloud platforms for the compute-light outlier detection workload. For the compute-intensive streaming video analytics task, an opensource solution to object detection running on cloud VMs saves on dollar costs compared to proprietary solutions provided by Amazon, Microsoft, and Google, but loses out on latency (up to 6X). If it runs on a low-powered edge device, the latency is up to 49X lower.