论文标题

无冲突连接编号和图的独立数

Conflict-free connection number and independence number of a graph

论文作者

Wang, Jing, Ji, Meng

论文摘要

如果其两个顶点通过路径连接,则边缘颜色的图形$ g $是无冲突连接的,该路径包含恰好在其边缘之一上使用的颜色。由$ cfc(g)$表示的连接图$ g $的无冲突连接编号定义为为了使$ g $无冲突连接所需的最小颜色数。在本文中,我们研究了图形的无冲突连接编号与独立数之间的关系。我们首先表明,任何连接的图形$ g $ $ cfc(g)\leα(g)$,并给出一个示例,显示界限是锋利的。通过此结果,我们证明,如果$ t $是$δ(t)\ ge \ frac {α(t)+2} {2} $的树,则$ cfc(t)=δ(t)$。

An edge-colored graph $G$ is conflict-free connected if any two of its vertices are connected by a path, which contains a color used on exactly one of its edges. The conflict-free connection number of a connected graph $G$, denoted by $cfc(G)$, is defined as the minimum number of colors that are required in order to make $G$ conflict-free connected. In this paper, we investigate the relation between the conflict-free connection number and the independence number of a graph. We firstly show that $cfc(G)\le α(G)$ for any connected graph $G$, and an example is given showing that the bound is sharp. With this result, we prove that if $T$ is a tree with $Δ(T)\ge \frac{α(T)+2}{2}$, then $cfc(T)=Δ(T)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源