论文标题
选择和实施社交网络分析参考模型的指南
A guide to choosing and implementing reference models for social network analysis
论文作者
论文摘要
分析社交网络具有挑战性。关系数据的关键特征需要使用非标准统计方法,例如开发系统特异性的无效或参考模型,这些模型将一个或多个观察到的数据的一个或多个组件随机化。在这里,我们回顾了各种随机过程,这些程序生成了用于社交网络分析的参考模型。参考模型在分析网络数据时提供了对假设测试的期望。我们概述了生成有效的参考模型和详细介绍产生参考分布的四种方法的关键阶段:置换,重采样,从分布中采样和生成模型。我们强调了何时适当的方法,并注意潜在的陷阱,以供研究人员避免。在整个过程中,我们以模拟社会系统的示例来说明我们的观点。我们的目的是为社交网络研究人员提供对分析方法的更深入的了解,以在为特定的研究问题定制参考模型时增强他们的信心。
Analyzing social networks is challenging. Key features of relational data require the use of non-standard statistical methods such as developing system-specific null, or reference, models that randomize one or more components of the observed data. Here we review a variety of randomization procedures that generate reference models for social network analysis. Reference models provide an expectation for hypothesis-testing when analyzing network data. We outline the key stages in producing an effective reference model and detail four approaches for generating reference distributions: permutation, resampling, sampling from a distribution, and generative models. We highlight when each type of approach would be appropriate and note potential pitfalls for researchers to avoid. Throughout, we illustrate our points with examples from a simulated social system. Our aim is to provide social network researchers with a deeper understanding of analytical approaches to enhance their confidence when tailoring reference models to specific research questions.