论文标题
关于liouville歧管的复杂性
On the embedding complexity of Liouville manifolds
论文作者
论文摘要
我们使用线性化接触同源性的一般形式及其L-内在结构的一般形式主义及其liouville歧管之间的精确符号嵌入,定义了一个共生不变的家族。作为我们的主要应用,我们研究了正常的跨越除数互补之间的嵌入,在复杂的投影空间中,在许多情况下给出了完整的表征。我们的主要嵌入结果是从伪晶曲线中明确推导的,而没有吸引哈密顿或虚拟扰动。
We define a family of symplectic invariants which obstruct exact symplectic embeddings between Liouville manifolds, using the general formalism of linearized contact homology and its L-infinity structure. As our primary application, we investigate embeddings between normal crossing divisor complements in complex projective space, giving a complete characterization in many cases. Our main embedding results are deduced explicitly from pseudoholomorphic curves, without appealing to Hamiltonian or virtual perturbations.