论文标题

通用斐波那纳维 - Viro代码的量子误差校正阈值

Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code

论文作者

Schotte, Alexis, Zhu, Guanyu, Burgelman, Lander, Verstraete, Frank

论文摘要

我们考虑在圆环上对粒子上的二维量子记忆,该记忆编码扩展的斐波那ic施加网络代码,并在对这些量子的噪声进行去极化噪声时设计误差的策略。对管代数的概念进行构建。错误的斐波那契anyons的错误。然后,张量网络技术允许定量研究Pauli噪声在字符串 - 网络空间上的作用。我们执行此纤维acci代码的错误校正蒙特卡洛模拟,并比较多个解码器的性能。对于固定速率采样脱离噪声模型的情况,我们发现使用聚类解码器的误差校正阈值为4.7%。据我们所知,这是第一次估算了二维错误校正码的阈值,可以通过编织Anyons在其代码空间内对通用量子计算进行通用量子计算

We consider a two-dimensional quantum memory of qubits on a torus which encode the extended Fibonaccistring-net code, and devise strategies for error correction when those qubits are subjected to depolarizing noise.Building on the concept of tube algebras, we construct a set of measurements and of quantum gates whichmap arbitrary qubit errors to the string-net subspace and allow for the characterization of the resulting errorsyndrome in terms of doubled Fibonacci anyons. Tensor network techniques then allow to quantitatively studythe action of Pauli noise on the string-net subspace. We perform Monte Carlo simulations of error correctionin this Fibonacci code, and compare the performance of several decoders. For the case of a fixed-rate samplingdepolarizing noise model, we find an error correction threshold of 4.7% using a clustering decoder. To the bestof our knowledge, this is the first time that a threshold has been estimated for a two-dimensional error correctingcode for which universal quantum computation can be performed within its code space via braiding anyons

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源