论文标题
广义的迭代和签名
Generalized iterated-sums signatures
论文作者
论文摘要
我们探讨了迭代和签名的广义版本的代数属性,灵感来自F.〜király和H.〜oberhauser的先前作品。特别是,我们通过考虑后者的单词的变形准避难所产物来探索如何在张量代数上恢复关联线性图的特性。我们在迭代和签名上引入了三个非线性转换,精神靠近机器学习应用,并显示了它们的某些属性。
We explore the algebraic properties of a generalized version of the iterated-sums signature, inspired by previous work of F.~Király and H.~Oberhauser. In particular, we show how to recover the character property of the associated linear map over the tensor algebra by considering a deformed quasi-shuffle product of words on the latter. We introduce three non-linear transformations on iterated-sums signatures, close in spirit to Machine Learning applications, and show some of their properties.