论文标题
群集约束的最大覆盖范围:基于LP的近似技术
Maximum Coverage with Cluster Constraints: An LP-Based Approximation Technique
论文作者
论文摘要
包装问题构成了重要的优化问题,既是由于它们的高实际相关性和理论吸引力。但是,尽管文献中已经研究了大量的变体,但大多数包装问题仅包括一个容量限制。例如,在多个背包问题中,我们将项目分配给多个背包,以使其能力不超过。但是,如果将这些背包划分为簇,每个链接都会在该集群中包含的背包施加额外的容量限制呢?在本文中,我们研究了群集约束(MCPC)的最大覆盖范围问题,该问题通过合并群集约束来通过背包约束(MCPK)概括了最大覆盖范围问题。我们的主要贡献是基于LP的一般技术,用于得出群集电容性问题的近似算法。我们的技术使我们能够将集群电容性问题减少到各自的原始包装问题。通过为原始问题使用基于LP的近似算法,我们可以为该问题获得有效的舍入方案,该方案仅在近似保证中失去一小部分。我们将技术应用于MCPC的近似算法。为此,我们通过调整移动式圆形技术来开发一种基于LP的$ \ frac12(1- \ frac1e)$ - MCPK的近似算法。结合我们的还原技术,我们获得了MCPC的$ \ frac13(1- \ frac1e)$ - 近似算法。我们还得出了MCPC的特殊情况的改进结果,MCPC是群集约束(MKPC)的多种背包问题。基于一种简单的贪婪算法,我们的方法得出了$ \ frac13 $ - approximation算法。通过将我们的技术与更复杂的迭代舍入方法相结合,我们可以为某些MKPC的特殊情况获得$ \ frac12 $ approximation算法。
Packing problems constitute an important class of optimization problems, both because of their high practical relevance and theoretical appeal. However, despite the large number of variants that have been studied in the literature, most packing problems encompass a single tier of capacity restrictions only. For example, in the Multiple Knapsack Problem, we assign items to multiple knapsacks such that their capacities are not exceeded. But what if these knapsacks are partitioned into clusters, each imposing an additional capacity restriction on the knapsacks contained in that cluster? In this paper, we study the Maximum Coverage Problem with Cluster Constraints (MCPC), which generalizes the Maximum Coverage Problem with Knapsack Constraints (MCPK) by incorporating cluster constraints. Our main contribution is a general LP-based technique to derive approximation algorithms for cluster capacitated problems. Our technique allows us to reduce the cluster capacitated problem to the respective original packing problem. By using an LP-based approximation algorithm for the original problem, we can then obtain an effective rounding scheme for the problem, which only loses a small fraction in the approximation guarantee. We apply our technique to derive approximation algorithms for MCPC. To this aim, we develop an LP-based $\frac12(1-\frac1e)$-approximation algorithm for MCPK by adapting the pipage rounding technique. Combined with our reduction technique, we obtain a $\frac13(1-\frac1e)$-approximation algorithm for MCPC. We also derive improved results for a special case of MCPC, the Multiple Knapsack Problem with Cluster Constraints (MKPC). Based on a simple greedy algorithm, our approach yields a $\frac13$-approximation algorithm. By combining our technique with a more sophisticated iterative rounding approach, we obtain a $\frac12$-approximation algorithm for certain special cases of MKPC.