论文标题

可变形的Gabor特征网络用于生物医学图像分类

Deformable Gabor Feature Networks for Biomedical Image Classification

论文作者

Gong, Xuan, Xia, Xin, Zhu, Wentao, Zhang, Baochang, Doermann, David, Zhuo, Lian

论文摘要

近年来,深度学习在医学图像分析领域取得了统治地位。但是,我们发现,当前深度学习方法代表许多医学图像的复杂几何结构的能力不足。一个限制是,深度学习模型需要大量数据,并且很难获得足够数量的细节。第二个限制是,这些医学图像的基本特征已建立得很好,但是现有的卷积神经网络(CNN)的黑盒性质不允许我们利用它们。在本文中,我们重新访问Gabor过滤器,并引入可变形的Gabor卷积(DGCONV),以扩大深层网络的可解释性并实现复杂的空间变化。这些特征是在具有自适应Gabor卷积的可变形采样位置学习的,以提高对复杂物体的代表性和鲁棒性。 DGCONV取代了标准的卷积层,并易于训练端到端,导致可变形的Gabor特征网络(DGFN),几乎没有其他参数,并且最少的额外培训成本。我们介绍了DGFN,以解决乳房X线照片和ChestX-Ray14数据集上的INBREAST数据集上的深层多标签分类,以用于肺X射线图像。

In recent years, deep learning has dominated progress in the field of medical image analysis. We find however, that the ability of current deep learning approaches to represent the complex geometric structures of many medical images is insufficient. One limitation is that deep learning models require a tremendous amount of data, and it is very difficult to obtain a sufficient amount with the necessary detail. A second limitation is that there are underlying features of these medical images that are well established, but the black-box nature of existing convolutional neural networks (CNNs) do not allow us to exploit them. In this paper, we revisit Gabor filters and introduce a deformable Gabor convolution (DGConv) to expand deep networks interpretability and enable complex spatial variations. The features are learned at deformable sampling locations with adaptive Gabor convolutions to improve representativeness and robustness to complex objects. The DGConv replaces standard convolutional layers and is easily trained end-to-end, resulting in deformable Gabor feature network (DGFN) with few additional parameters and minimal additional training cost. We introduce DGFN for addressing deep multi-instance multi-label classification on the INbreast dataset for mammograms and on the ChestX-ray14 dataset for pulmonary x-ray images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源