论文标题

可扩展的本地和平行的两网格有限元方案

Expandable Local and Parallel Two-Grid Finite Element Scheme for the Stokes Equations

论文作者

Hou, Yanren, Shi, Feng, Zheng, Haibiao

论文摘要

在本文中,我们提出了一种新型的本地和平行的两网格有限元方案,用于求解Stokes方程,并严格建立其先验误差估计。该方案同时承认了子域及其扩展之间的子问题和距离的小尺度,因此可以扩展。基于先验误差估计,我们提供了具有合适迭代编号的相应迭代方案。如果粗网格尺寸$ h $,并且正确选择了$ O(| \ ln H |)$(3-d中的$ O(| \ ln H |^2)$,则可以在3-D中$ O(| \ ln H |)$(3-D)中的最佳收敛订单(如果粗网格尺寸$ h $,并且正确选择了罚款$ h $),则可以在2-D和$ O(| \ ln H |)中达到最佳收敛订单。最后,进行了一些数值测试,包括2-D和3-D病例,以验证我们的理论结果。

In this paper, we present a novel local and parallel two-grid finite element scheme for solving the Stokes equations, and rigorously establish its a priori error estimates. The scheme admits simultaneously small scales of subproblems and distances between subdomains and its expansions, and hence can be expandable. Based on the a priori error estimates, we provide a corresponding iterative scheme with suitable iteration number. The resulting iterative scheme can reach the optimal convergence orders within specific two-grid iterations ($O(|\ln H|^2)$ in 2-D and $O(|\ln H|)$ in 3-D) if the coarse mesh size $H$ and the fine mesh size $h$ are properly chosen. Finally, some numerical tests including 2-D and 3-D cases are carried out to verify our theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源